OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 32 — Nov. 10, 2013
  • pp: 7832–7837

Enhancing the chroma of pigmented polymers using antireflective surface structures

Jeppe S. Clausen, Alexander B. Christiansen, Anders Kristensen, and N. Asger Mortensen  »View Author Affiliations

Applied Optics, Vol. 52, Issue 32, pp. 7832-7837 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (441 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper we investigate how the color of a pigmented polymer is affected by reduction of the reflectance at the air–polymer interface. Both theoretical and experimental investigations show modified diffuse-direct reflectance spectra when the reflectance of the surface is lowered. Specifically it is found that the color change is manifested as an increase in chroma, leading to a clearer color experience. The experimental implementation is done using random tapered surface structures replicated in polymer from silicon masters using hot embossing.

© 2013 Optical Society of America

OCIS Codes
(120.5700) Instrumentation, measurement, and metrology : Reflection
(310.1210) Thin films : Antireflection coatings
(330.1690) Vision, color, and visual optics : Color
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Thin Films

Original Manuscript: August 13, 2013
Revised Manuscript: October 9, 2013
Manuscript Accepted: October 15, 2013
Published: November 8, 2013

Jeppe S. Clausen, Alexander B. Christiansen, Anders Kristensen, and N. Asger Mortensen, "Enhancing the chroma of pigmented polymers using antireflective surface structures," Appl. Opt. 52, 7832-7837 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. G. Bernhard, “Structural and functional adaptation in a visual system,” Endeavour 26, 79–84 (1967).
  2. P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by the moth eye principle,” Nature 244, 281–282 (1973). [CrossRef]
  3. S. Wilson and M. Hutley, “The optical properties of “moth eye” antireflection surfaces,” Opt. Acta 29, 993–1009 (1982). [CrossRef]
  4. H. Jung and K.-H. Jeong, “Monolithic polymer microlens arrays with antireflective nanostructures,” Appl. Phys. Lett. 101, 203102 (2012). [CrossRef]
  5. P. Lalanne and G. M. Morris, “Antireflection behavior of silicon subwavelength periodic structures for visible light,” Nanotechnology 8, 53–56 (1997). [CrossRef]
  6. Y. Kanamori, M. Sasaki, and K. Hane, “Broadband antireflection gratings fabricated upon silicon substrates,” Opt. Lett. 24, 1422–1424 (1999). [CrossRef]
  7. C.-H. Sun, P. Jiang, and B. Jiang, “Broadband moth-eye antireflection coatings on silicon,” Appl. Phys. Lett. 92, 061112 (2008). [CrossRef]
  8. C.-H. Sun, B. J. Ho, B. Jiang, and P. Jiang, “Biomimetic subwavelength antireflective gratings on GaAs,” Opt. Lett. 33, 2224–2226 (2008). [CrossRef]
  9. J. Tommila, V. Polojärvi, A. Aho, A. Tukiainen, J. Viheriälä, J. Salmi, A. Schramm, J. Kontio, A. Turtiainen, T. Niemi, and M. Guina, “Nanostructured broadband antireflection coatings on AllnP fabricated by nanoimprint lithography,” Sol. Energy Mater. Sol. Cells 94, 1845–1848 (2010). [CrossRef]
  10. C.-J. Yang, C.-L. Lin, C.-C. Wu, Y.-H. Yeh, C.-C. Cheng, Y.-H. Kuo, and T.-H. Chen, “High-contrast top-emitting organic light-emitting devices for active-matrix displays,” Appl. Phys. Lett. 87, 143507 (2005). [CrossRef]
  11. R. Singh, K. N. Narayanan Unni, A. Solanki, and Deepak, “Improving the contrast ratio of OLED displays: an analysis of various techniques,” Opt. Mater. 34, 716–723 (2012). [CrossRef]
  12. H.-R. Lee, D. Jae Kim, and K.-H. Lee, “Anti-reflective coating for the deep coloring of pet fabrics using an atmospheric pressure plasma technique,” Surf. Coat. Technol. 142–144, 468–473 (2001). [CrossRef]
  13. H. Becker and U. Heim, “Hot embossing as a method for the fabrication of polymer high aspect ratio structures,” Sens. Actuators A 83, 130–135 (2000). [CrossRef]
  14. A. B. Christiansen, J. Clausen, N. A. Mortensen, and A. Kristensen, “Minimizing scattering from antireflective surfaces replicated from low-aspect-ratio black silicon,” Appl. Phys. Lett. 101, 131902 (2012). [CrossRef]
  15. G. A. Klein, Industrial Color Physics (Springer, 2010).
  16. M. Elias, P. Castiglione, and G. Elias, “Influence of interface roughness on surface and bulk scattering,” J. Opt. Soc. Am. A 27, 1265–1273 (2010). [CrossRef]
  17. S. Chandrasekhar, Radiative Transfer (Dover, 1960).
  18. F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsberg, and T. Limperis, “Geometrical considerations and nomenclature for reflectance,” Natl. Bur. Stand. (U.S.), Monogr. 160, 1–52 (1977).
  19. L. B. Wolff, “Diffuse-reflectance model for smooth dielectric surfaces,” J. Opt. Soc. Am. A 11, 2956–2968 (1994). [CrossRef]
  20. G. Sharma, Digital Color Imaging Handbook (CRC Press, 2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited