OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 33 — Nov. 20, 2013
  • pp: 7882–7888

Protocol based on compressed sensing for high-speed authentication and cryptographic key distribution over a multiparty optical network

Wen-Kai Yu, Shen Li, Xu-Ri Yao, Xue-Feng Liu, Ling-An Wu, and Guang-Jie Zhai  »View Author Affiliations


Applied Optics, Vol. 52, Issue 33, pp. 7882-7888 (2013)
http://dx.doi.org/10.1364/AO.52.007882


View Full Text Article

Enhanced HTML    Acrobat PDF (573 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a protocol for the amplification and distribution of a one-time-pad cryptographic key over a point-to-multipoint optical network based on computational ghost imaging (GI) and compressed sensing (CS). It is shown experimentally that CS imaging can perform faster authentication and increase the key generation rate by an order of magnitude compared with the scheme using computational GI alone. The protocol is applicable for any number of legitimate user, thus, the scheme could be used in real intercity networks where high speed and high security are crucial.

© 2013 Optical Society of America

OCIS Codes
(060.4250) Fiber optics and optical communications : Networks
(060.4510) Fiber optics and optical communications : Optical communications
(200.4740) Optics in computing : Optical processing
(060.4785) Fiber optics and optical communications : Optical security and encryption
(110.3010) Imaging systems : Image reconstruction techniques

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: July 17, 2013
Revised Manuscript: October 11, 2013
Manuscript Accepted: October 15, 2013
Published: November 13, 2013

Citation
Wen-Kai Yu, Shen Li, Xu-Ri Yao, Xue-Feng Liu, Ling-An Wu, and Guang-Jie Zhai, "Protocol based on compressed sensing for high-speed authentication and cryptographic key distribution over a multiparty optical network," Appl. Opt. 52, 7882-7888 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-33-7882


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. H. Bennett and G. Brassard, “Quantum cryptography: public-key distribution and coin tossing,” in Proc. ICCSSP, Bangalore, India, 1984, pp. 175–179.
  2. C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, “Experimental quantum cryptography,” J. Cryptol. 5, 3–28 (1992). [CrossRef]
  3. C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bell’s theorem,” Phys. Rev. Lett. 68, 557–559 (1992). [CrossRef]
  4. C. H. Bennett, G. Brassard, and A. Ekert, “Quantum cryptography,” Sci. Am. 267, 50–57 (1992). [CrossRef]
  5. H. K. Lo, H. F. Chau, and M. Ardehali, “Efficient quantum key distribution scheme and a proof of its unconditional security,” J. Cryptol. 18, 133–165 (2005). [CrossRef]
  6. W. Y. Hwang, I. G. Koh, and Y. D. Han, “Quantum cryptography without public announcement of bases,” Phys. Rev. A 244, 489–494 (1998).
  7. D. J. Guan, Y. J. Wang, and E. S. Zhang, “Quantum key evolution and its applications,” Int. J. Quantum Inform. 10, 1250044 (2012). [CrossRef]
  8. T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995). [CrossRef]
  9. A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classical correlation,” Phys. Rev. Lett. 93, 093602 (2004). [CrossRef]
  10. D. Zhang, Y. H. Zhai, L. A. Wu, and X. H. Chen, “Correlated two-photon imaging with true thermal light,” Opt. Lett. 30, 2354–2356 (2005). [CrossRef]
  11. B. I. Erkmen and J. H. Shapiro, “Unified theory of ghost imaging with Gaussian-state light,” Phys. Rev. A 77, 043809 (2008). [CrossRef]
  12. G. Brida, M. V. Chekhova, G. A. Fornaro, M. Genovese, E. D. Lopaeva, and I. R. Berchera, “Systematic analysis of signal-to-noise ratio in bipartite ghost imaging with classical and quantum light,” Phys. Rev. A 83, 063807 (2011). [CrossRef]
  13. J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78, 061802R (2008). [CrossRef]
  14. P. Clemente, V. Durán, V. Torres-Company, E. Tajahuerce, and J. Lanci, “Optical encryption based on computational ghost imaging,” Opt. Lett. 35, 2391–2393 (2010). [CrossRef]
  15. M. Tanha, R. Kheradmand, and S. Ahmadi-Kandjani, “Gray-scale and color optical encryption based on computational ghost imaging,” Appl. Phys. Lett. 101, 101108 (2012). [CrossRef]
  16. D. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52, 1289–1306 (2006). [CrossRef]
  17. E. J. Candès, “Compressive sampling,” in Proceedings of the International Congress of Mathematics (European Mathematical Society, 2006), Vol. 3, p. 1433.
  18. M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008). [CrossRef]
  19. W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93, 121105 (2008). [CrossRef]
  20. O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95, 131110 (2009). [CrossRef]
  21. S. Li, X. R. Yao, W. K. Yu, L. A. Wu, and G. J. Zhai, “High-speed secure key distribution over an optical network based on computational correlation imaging,” Opt. Lett. 38, 2144–2146 (2013). [CrossRef]
  22. F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104, 253603 (2010). [CrossRef]
  23. C. B. Li, “An efficient algorithm for total variation regularization with applications to the single pixel camera and compressive sensing,” Masters of Science thesis (Rice University, 2010).
  24. J. Walker, “Ent: a pseudorandom number sequence test program,” Tech. Rep. (1998), http://www.fourmilab.ch/random .
  25. Texas Instruments., “DLP 0.95 1080p type A DMD (Rev. B),” Tech. Rep. (2013), http://www.ti.com/lit/ds/dlps025b/dlps025b.pdf .
  26. Texas Instruments, “DLP discovery 4100 chipset data sheet (Rev. A),” Tech. Rep. (2013), http://www.ti.com/lit/er/dlpu008a/dlpu008a.pdf .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited