OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 33 — Nov. 20, 2013
  • pp: 7942–7949

Optimal design of ultrahigh-energy laser amplifier chain with high storage energy extraction

Qiang Liu, Hailong Hong, Xing Fu, Zhan Sui, Lei Huang, and Mali Gong  »View Author Affiliations


Applied Optics, Vol. 52, Issue 33, pp. 7942-7949 (2013)
http://dx.doi.org/10.1364/AO.52.007942


View Full Text Article

Enhanced HTML    Acrobat PDF (896 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper presents the concept of constant-fluence amplification. It refers to the fact that laser fluence anywhere in the amplifier gain medium is identical to the design fluence Edesign, which represents the maximum allowed fluence in consideration of the laser-induced damage threshold (LIDT). Based on this concept, we explore ideal amplifier model (IAM) and near-ideal amplifier chain (NIAC) and propose an optimal NIAC design method and analytically offer an indicator of the extraction efficiency. Finally, the paper discusses the influences of losses on the NIAC’s extraction efficiency.

© 2013 Optical Society of America

OCIS Codes
(140.3280) Lasers and laser optics : Laser amplifiers
(140.3580) Lasers and laser optics : Lasers, solid-state

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: January 4, 2013
Revised Manuscript: September 24, 2013
Manuscript Accepted: October 7, 2013
Published: November 13, 2013

Citation
Qiang Liu, Hailong Hong, Xing Fu, Zhan Sui, Lei Huang, and Mali Gong, "Optimal design of ultrahigh-energy laser amplifier chain with high storage energy extraction," Appl. Opt. 52, 7942-7949 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-33-7942


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. A. Remington, D. Arnett, R. P. Drake, and H. Takabe, “Modeling astrophysical phenomena in the laboratory with intense lasers,” Science 284, 1488–1493 (1999). [CrossRef]
  2. J. P. Freidberg and A. C. Kadak, “Fusion–fission hybrids revisited,” Nat. Phys. 5, 370–372 (2009). [CrossRef]
  3. T. Kawashima, T. Kanabe, O. Matsumoto, R. Yasuhara, H. Furukawa, M. Miyamoto, T. Sekine, T. Kurita, H. Kan, M. Yamanaka, M. Nakatsuka, and Y. Izawa, “Development of diode-pumped solid-state laser HALNA for fusion reactor driver,” Electr. Eng. Jpn. 155, 27–35 (2006). [CrossRef]
  4. A. Bayramian, J. Armstrong, G. Beer, R. Campbell, B. Chai, R. Cross, A. Erlandson, Y. Fei, B. Freitas, R. Kent, J. Menapace, W. Molander, K. Schaffers, C. Siders, S. Sutton, J. Tassano, S. Telford, C. Ebbers, J. Caird, and C. Barty, “High-average-power femto-petawatt laser pumped by the Mercury laser facility,” J. Opt. Soc. Am. B 25, B57–B61 (2008). [CrossRef]
  5. C. Ebbers, J. Caird, and E. Moses, “The Mercury laser moves toward practical laser fusion,” Laser Focus World 45, 51–56 (2009).
  6. J. Caird, V. Agrawal, A. Bayramian, R. Beach, J. Britten, D. Chen, R. Cross, C. Ebbers, A. Erlandson, M. Feit, B. Freitas, C. Ghosh, C. Haefner, D. Homoelle, T. Ladran, J. Latkowski, W. Molander, J. Murray, S. Rubenchik, K. Schaffers, C. Siders, E. Sappaerts, S. Sutton, S. Telford, J. Trenholme, and C. Barty, “Nd:Glass laser design for laser ICF fission energy (LIFE),” Fusion Sci. Technol. 56, 607–617 (2009).
  7. W. Meier, R. Abbott, R. Beach, J. Blink, J. Caird, A. Erlandson, J. Farmer, W. Halsey, T. Ladran, J. Latkowski, A. MacIntyre, R. Miles, and E. Storm, “Systems modeling for the laser fusion–fission energy (LIFE) power plant,” Fusion Sci. Technol. 56, 647–651 (2009).
  8. C. Haynam, P. Wegner, J. Auerbach, M. Bowers, S. Dixit, G. Erbert, G. Heestand, M. Henesian, M. Hermann, K. Jancaitis, K. Manes, C. Marshall, N. Mehta, J. Menapace, E. Moses, J. Murray, M. Nostrand, C. Orth, R. Patterson, R. Sacks, M. Shaw, M. Spaeth, S. Sutton, W. Williams, C. Widmayer, R. White, S. Yang, and B. M. Van Wonterghem, “National ignition facility laser performance status,” Appl. Opt. 46, 3276–3303 (2007). [CrossRef]
  9. E. I. Moses, “Ignition on the national ignition facility: a path towards inertial fusion energy,” Nucl. Fusion 49, 104022 (2009). [CrossRef]
  10. L. Frantz and J. Nodvik, “Theory of pulse propagation in a laser amplifier,” J. Appl. Phys. 34, 2346–2349 (1963). [CrossRef]
  11. W. Lowdermilk and J. Murray, “The multipass amplifier: theory and numerical analysis,” J. Appl. Phys. 51, 2436–2444 (1980). [CrossRef]
  12. W. Koechner, Solid State Laser Engineering, 6th ed. (Springer, 2006).
  13. M. Gong, Z. Sui, Q. Liu, and X. Fu, “Design of ultrahigh-energy laser amplifier system with high storage energy extraction,” Appl. Opt. 52, 394–399 (2013). [CrossRef]
  14. C. Orth, S. Payne, and W. Krupke, “A diode-pumped solid-state laser driver for inertial fusion energy,” Nucl. Fusion 36, 75–116 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited