OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 33 — Nov. 20, 2013
  • pp: 7981–7986

Theoretical and experimental study of 37-core waveguides with large mode area

Ping Wang, Guanghua Cheng, Ruimin Yi, Xin Liu, Tao Shang, Zhansheng Wang, and Lixin Guo  »View Author Affiliations


Applied Optics, Vol. 52, Issue 33, pp. 7981-7986 (2013)
http://dx.doi.org/10.1364/AO.52.007981


View Full Text Article

Enhanced HTML    Acrobat PDF (429 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The evanescently coupled multicore waveguide lattice composed of 37 linear type I cores hexagonally arranged has been theoretically studied and fabricated by low-repetition-rate femtosecond laser inscription of bulk fused silica. The effects of the single core’s numerical apertures (NAs) and spacing on the mode characteristics of the 37-core waveguide were calculated by the finite-element method. It was found that the mode field areas of the fundamental mode LP01 with 5 μm spacing of different NAs were all larger than 577μm2, which was confirmed by the experiments. The measured near-field mode profiles for different writing conditions and different spacing also showed that the waveguide supported both a single mode (LP01) and two modes (LP01 and LP11). The multicore waveguide, according to our study, is particularly interesting for mode converters.

© 2013 Optical Society of America

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(220.4000) Optical design and fabrication : Microstructure fabrication
(230.7370) Optical devices : Waveguides

ToC Category:
Optical Devices

History
Original Manuscript: July 26, 2013
Revised Manuscript: September 30, 2013
Manuscript Accepted: October 17, 2013
Published: November 13, 2013

Citation
Ping Wang, Guanghua Cheng, Ruimin Yi, Xin Liu, Tao Shang, Zhansheng Wang, and Lixin Guo, "Theoretical and experimental study of 37-core waveguides with large mode area," Appl. Opt. 52, 7981-7986 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-33-7981


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729–1731 (1996). [CrossRef]
  2. X. Long, J. Bai, W. Zhao, R. Stoian, R. Hui, and G. Cheng, “Stressed waveguides with tubular depressed-cladding inscribed in phosphate glasses by femtosecond hollow laser beams,” Opt. Lett. 37, 3138–3140 (2012). [CrossRef]
  3. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008). [CrossRef]
  4. V. Zorba, N. Boukos, I. Zergioti, and C. Fotakis, “Ultraviolet femtosecond, picosecond and nanosecond laser microstructuring of silicon: structural and optical properties,” Appl. Opt. 47, 1846–1850 (2008). [CrossRef]
  5. M. S. Giridhar, K. Seong, A. Schulzgen, P. Khulbe, N. Peyghambarian, and M. Mansuripur, “Femtosecond pulsed laser micromachining of glass substrates with application to microfluidic devices,” Appl. Opt. 43, 4584–4589 (2004). [CrossRef]
  6. A. Arriola, S. Gross, N. Jovanovic, N. Charles, P. G. Tuthill, S. M. Olaizola, A. Fuerbach, and M. J. Withford, “Low bend loss waveguides enable compact, efficient 3D photonic chips,” Opt. Express 21, 2978–2986 (2013). [CrossRef]
  7. K. Mishchik, G. Cheng, G. Huo, I. M. Burakov, C. Mauclair, A. Mermillod-Blondin, A. Rosenfeld, Y. Ouerdane, A. Boukenter, O. Parriaus, and R. Stoian, “Nanosize structural modifications with polarization functions in ultrafast laser irradiated bulk fused silica,” Opt. Express 18, 24809–24824 (2010). [CrossRef]
  8. K. C. Vishnubhatla, J. Clark, G. Lanzani, R. Ramponi, R. Osellame, and T. Virgili, “Femtosecond laser fabrication of microfluidic channels for organic photonic devices,” Appl. Opt. 48, G114–G118 (2009). [CrossRef]
  9. A. M. Kowalevicz, V. Sharma, E. P. Ippen, J. G. Fujimoto, and K. Minoshima, “Three-dimensional photonic devices fabricated in glass by use of a femtosecond laser oscillator,” Opt. Lett. 30, 1060–1062 (2005). [CrossRef]
  10. R. Osellame, S. Taccheo, M. Marangoni, R. Ramponi, P. Laporta, D. Polli, S. D. Silvestri, and G. Cerullo, “Femtosecond writing of active optical waveguides with astigmatically shaped beams,” J. Opt. Soc. Am. B 20, 1559–1567 (2003). [CrossRef]
  11. S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A 77, 109–111 (2003). [CrossRef]
  12. J. Bai, G. Cheng, X. Long, Y. Wang, W. Zhao, G. Chen, R. Stoian, and R. Hui, “Polarization behavior of femtosecond laser written optical waveguides in Ti:Sapphire,” Opt. Express 20, 15035–15044 (2012). [CrossRef]
  13. R. He, Q. An, J. R. Vázquez de Aldana, Q. Lu, and F. Chen, “Femtosecond-laser micromachined optical waveguides in Bi4Ge3O12 crystals,” Appl. Opt. 52, 3173–3178 (2013). [CrossRef]
  14. S. Ghosh, N. D. Psaila, R. R. Thomson, B. P. Pal, R. K. Varshney, and A. K. Kar, “Ultrafast laser inscribed waveguide lattice in glass for direct observation of transverse localization of light,” Appl. Phys. Lett. 100, 101102 (2012). [CrossRef]
  15. D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, K. Kuan, T. M. Monro, M. Ams, A. Fuerbach, and M. J. Withford, “Fifty percent internal slope efficiency femtosecond direct-written Tm3+: ZBLAN waveguide laser,” Opt. Lett. 36, 1587–1589 (2011). [CrossRef]
  16. J. Siebenmorgen, T. Calmano, K. Petermann, and G. Huber, “Highly efficient Yb: YAG channel waveguide laser written with a femtosecond-laser,” Opt. Express 18, 16035–16041 (2010). [CrossRef]
  17. A. Szameit, D. Blömer, J. Burghoff, T. Pertsch, S. Nolte, and A. Tünnermann, “Hexagonal waveguide arrays written with fs-laser pulses,” Appl. Phys. B 82, 507–512 (2006). [CrossRef]
  18. A. Zoubir, C. Lopez, M. Richardson, and K. Richardson, “Femtosecond laser fabrication of tubular waveguides in poly(methyl methacrylate),” Opt. Lett. 29, 1840–1842 (2004). [CrossRef]
  19. K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329–3331 (1997). [CrossRef]
  20. S. Gross, M. Alberich, A. Arriola, M. J. Withford, and A. Fuerbach, “Fabrication of fully integrated antiresonant reflecting optical waveguides using the femtosecond laser direct-write technique,” Opt. Lett. 38, 1872–1874 (2013). [CrossRef]
  21. D. Homoelle, S. Wielandy, A. L. Gaeta, N. F. Borrelli, and C. Smith, “Infrared photosensitivity in silica glasses exposed to femtosecond laser pulses,” Opt. Lett. 24, 1311–1313 (1999). [CrossRef]
  22. S. Taccheo, G. D. Valle, R. Osellame, G. Cerullo, N. Chiodo, P. Laporta, O. Svelto, A. Killi, and U. Morgner, “Er:Yb-doped waveguide laser fabricated by femtosecond laser pulses,” Opt. Lett. 29, 2626–2628 (2004). [CrossRef]
  23. A. Ródenas, G. Martin, B. Arezki, N. Psaila, G. Jose, A. Jha, L. Labadie, P. Kern, A. Kar, and R. Thomson, “Three-dimensional mid-infrared photonic circuits in chalcogenide glass,” Opt. Lett. 37, 392–394 (2012). [CrossRef]
  24. T. Pertsch, U. Peschel, F. Lederer, J. Burghoff, M. Will, S. Nolte, and A. Tünnermann, “Discrete diffraction in two-dimensional arrays of coupled waveguides in silica,” Opt. Lett. 29, 468–470 (2004). [CrossRef]
  25. R. Osellame, N. Chiodo, G. D. Valle, S. Taccheo, R. Ramponi, G. Cerullo, A. Killi, U. Morgner, M. Lederer, and D. Kopf, “Optical waveguide writing with a diode-pumped femtosecond oscillator,” Opt. Lett. 29, 1900–1902 (2004). [CrossRef]
  26. M. M. Vogel, M. Abdou-Ahmed, A. Voss, and T. Graf, “Very-large-mode-area, single-mode multicore fiber,” Opt. Lett. 34, 2876–2878 (2009). [CrossRef]
  27. N. Jovanovic, I. Spaleniak, S. Gross, M. Ireland, J. S. Lawrence, C. Miese, A. Fuerbach, and M. J. Withford, “Integrated photonic building blocks for next-generation astronomical instrumentation I: the multimode waveguide,” Opt. Express 20, 17029–17043 (2012). [CrossRef]
  28. G. Cheng, C. D’Amico, X. Liu, and R. Stoian, “Large mode area waveguides with polarization functions by volume ultrafast laser photoinscription of fused silica,” Opt. Lett. 38, 1924–1926 (2013). [CrossRef]
  29. J. P. Berenger, “Three-dimensional perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 127, 363–379 (1996). [CrossRef]
  30. J. Jin, The Finite Element Method in Electromagnetics, 2nd ed. (Wiley-IEEE, 2002).
  31. G. Cheng, K. Mishchik, C. Mauclair, E. Audouard, and R. Stoian, “Ultrafast laser photoinscription of polarization sensitive devices in bulk silica glass,” Opt. Express 17, 9515–9525 (2009). [CrossRef]
  32. Y. Nasu, M. Kohtoku, and Y. Hibino, “Low-loss waveguides written with a femtosecond laser for flexible interconnection in a planar light-wave circuit,” Opt. Lett. 30, 723–725 (2005). [CrossRef]
  33. A. Zoubir, M. Richardson, L. Canioni, A. Brocas, and L. Sarger, “Optical properties of infrared femtosecond laser-modified fused silica and application to waveguide fabrication,” J. Opt. Soc. Am. B 22, 2138–2143 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited