OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 33 — Nov. 20, 2013
  • pp: 8048–8053

Polarization-enhanced absorption spectroscopy for laser stabilization

Paul D. Kunz, Thomas P. Heavner, and Steven R. Jefferts  »View Author Affiliations


Applied Optics, Vol. 52, Issue 33, pp. 8048-8053 (2013)
http://dx.doi.org/10.1364/AO.52.008048


View Full Text Article

Enhanced HTML    Acrobat PDF (347 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate a variation of pump-probe spectroscopy that is particularly useful for laser frequency stabilization. The polarization-enhanced absorption spectroscopy (POLEAS) signal provides a significant improvement in signal-to-noise ratio over saturated absorption spectroscopy (SAS) for the important and commonly used atomic cycling transitions. The improvements can directly increase the short-term stability of a laser frequency lock, given sufficient servo loop bandwidth. The long-term stability of the POLEAS method, which is limited by environmental sensitivities, is comparable to that of SAS. The POLEAS signal is automatically Doppler-free, without requiring a separate Doppler subtraction beam, and lends itself to straightforward compact packaging. Finally, by increasing the amplitude of the desired (cycling) peak, while reducing the amplitude of all other peaks in the manifold, the POLEAS method eases the implementation of laser auto-locking schemes.

OCIS Codes
(000.2170) General : Equipment and techniques
(300.1030) Spectroscopy : Absorption
(300.6170) Spectroscopy : Spectra
(300.6360) Spectroscopy : Spectroscopy, laser
(140.3425) Lasers and laser optics : Laser stabilization

ToC Category:
Spectroscopy

History
Original Manuscript: May 23, 2013
Revised Manuscript: August 28, 2013
Manuscript Accepted: September 16, 2013
Published: November 15, 2013

Citation
Paul D. Kunz, Thomas P. Heavner, and Steven R. Jefferts, "Polarization-enhanced absorption spectroscopy for laser stabilization," Appl. Opt. 52, 8048-8053 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-33-8048


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6, 687–692 (2012). [CrossRef]
  2. W. Demtröder, Laser Spectroscopy (Springer, 2008).
  3. K. B. MacAdam, A. Steinbach, and C. Wieman, “A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60, 1098–1111 (1992). [CrossRef]
  4. O. Schmidt, K.-M. Knaak, R. Wynands, and D. Meschede, “Cesium saturation spectroscopy revisited: how to reverse peaks and observe narrow resonances,” Appl. Phys. B 59, 167–178 (1994). [CrossRef]
  5. C. Wieman and T. W. Hänsch, “Doppler-free laser polarization spectroscopy,” Phys. Rev. Lett. 36, 1170–1173 (1976). [CrossRef]
  6. C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, “Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking,” J. Phys. B 35, 5141–5151 (2002). [CrossRef]
  7. Y. Yoshikawa, T. Umeki, T. Mukae, Y. Torii, and T. Kuga, “Frequency stabilization of a laser diode with use of light-induced birefringence in an atomic vapor,” Appl. Opt. 42, 6645–6649 (2003). [CrossRef]
  8. V. B. Tiwari, S. Singh, S. R. Mishra, H. S. Rawat, and S. C. Mehendale, “Laser frequency stabilization using Doppler-free bi-polarization spectroscopy,” Opt. Commun. 263, 249–255 (2006). [CrossRef]
  9. T. Wu, X. Peng, W. Gong, Y. Zhan, Z. Lin, B. Luo, and H. Guo, “Observation and optimization of 4He atomic polarization spectroscopy,” Opt. Lett. 38, 986–988 (2013). [CrossRef]
  10. C. Javaux, I. G. Hughes, G. Lochead, J. Millen, and M. P. A. Jones, “Modulation-free pump-probe spectroscopy of strontium atoms,” Eur. Phys. J. D 57, 151–154 (2010). [CrossRef]
  11. P. Kulatunga, H. C. Busch, L. R. Andrews, and C. I. Sukenik, “Two-color polarization spectroscopy of rubidium,” Opt. Commun. 285, 2851–2853 (2012). [CrossRef]
  12. C. Carr, C. S. Adams, and K. J. Weatherill, “Polarization spectroscopy of an excited state transition,” Opt. Lett. 37, 118–120 (2012). [CrossRef]
  13. V. V. Yashchuk, D. Budker, and J. R. Davis, “Laser frequency stabilization using linear magneto-optics,” Rev. Sci. Instrum. 71, 341–346 (2000). [CrossRef]
  14. H.-R. Noh, G. Moon, and W. Jhe, “Discrimination of the effects of saturation and optical pumping in velocity-dependent pump-probe spectroscopy of rubidium: a simple analytical study,” Phys. Rev. 82, 062517 (2010). [CrossRef]
  15. G. Moon and H. R. Noh, “A comparison of the dependence of saturated absorption signals on pump beam diameter and intensity,” J. Opt. Soc. Am. B 25, 2101–2106 (2008). [CrossRef]
  16. G. Moon, M.-S. Heo, S. R. Shin, H.-R. Noh, and W. Jhe, “Calculation of analytic populations for a multilevel atom at low laser intensity,” Phys. Rev. 78, 015404 (2008). [CrossRef]
  17. G. Moon and H.-R. Noh, “Analytic calculation of linear susceptibility in velocity-dependent pump-probe spectroscopy,” Phys. Rev. 78, 032506 (2008). [CrossRef]
  18. H. D. Do, G. Moon, and H.-R. Noh, “Polarization spectroscopy of rubidium atoms: theory and experiment,” Phys. Rev. 77, 032513 (2008). [CrossRef]
  19. G. Moon and H. R. Noh, “Analytic solutions for the saturated absorption spectra,” J. Opt. Soc. Am. B 25, 701–711 (2008). [CrossRef]
  20. D. A. Smith and I. G. Hughes, “The role of hyperfine pumping in multilevel systems exhibiting saturated absorption,” Am. J. Phys. 72, 631–637 (2004). [CrossRef]
  21. D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE 54, 221–230 (1966). [CrossRef]
  22. D. Groswasser, A. Waxman, M. Givon, G. Aviv, Y. Japha, M. Keil, and R. Folman, “Retroreflecting polarization spectroscopy enabling miniaturization,” Rev. Sci. Instrum. 80, 093103 (2009). [CrossRef]
  23. L. D. Turner, K. P. Weber, C. J. Hawthorn, and R. E. Scholten, “Frequency noise characterization of narrow linewidth diode lasers,” Opt. Commun. 201, 391–397 (2002). [CrossRef]
  24. H. Talvitie, M. Merimaa, and E. Ikonen, “Frequency stabilization of a diode laser to Doppler-free spectrum of molecular iodine at 633  nm,” Opt. Commun. 152, 182–188 (1998). [CrossRef]
  25. D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74, 1153–1201 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited