OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 33 — Nov. 20, 2013
  • pp: 8095–8101

Engineering of phase matching for mid-infrared coherent anti-Stokes Raman wavelength conversion with orthogonally polarized pump and Stokes waves in silicon-on-sapphire waveguides

Zhaolu Wang, Hongjun Liu, Nan Huang, Qibing Sun, and Xuefeng Li  »View Author Affiliations


Applied Optics, Vol. 52, Issue 33, pp. 8095-8101 (2013)
http://dx.doi.org/10.1364/AO.52.008095


View Full Text Article

Enhanced HTML    Acrobat PDF (771 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The conversion efficiency of mid-infrared wavelength conversion based on coherent anti-Stokes Raman scattering with TE-polarized pump and TM-polarized Stokes waves is theoretically investigated in silicon-on-sapphire (SOS) waveguides. The peak conversion efficiency of 10dB is obtained when the linear propagation loss is 1dB/cm at Δk=0; however, it is reduced to 13.6dB when the linear propagation loss is 2dB/cm. The phase matching for wavelength conversion with orthogonally polarized pump and Stokes waves can be realized by engineering the birefringence in SOS waveguides, because proper phase mismatch induced by birefringence together with material dispersion-induced phase mismatch can counteract the large phase mismatch induced by waveguide dispersion. Moreover, compared with the phase matching for identically polarized pump and Stokes waves, the phase matching for orthogonally polarized pump and Stokes waves can be realized in a SOS waveguide with much smaller cross section, which reduces the power requirement for optical systems.

© 2013 Optical Society of America

OCIS Codes
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(230.7370) Optical devices : Waveguides

ToC Category:
Nonlinear Optics

History
Original Manuscript: September 9, 2013
Revised Manuscript: October 23, 2013
Manuscript Accepted: October 23, 2013
Published: November 18, 2013

Citation
Zhaolu Wang, Hongjun Liu, Nan Huang, Qibing Sun, and Xuefeng Li, "Engineering of phase matching for mid-infrared coherent anti-Stokes Raman wavelength conversion with orthogonally polarized pump and Stokes waves in silicon-on-sapphire waveguides," Appl. Opt. 52, 8095-8101 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-33-8095


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010). [CrossRef]
  2. R. L. Espinola, J. I. Dadap, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, “Raman amplification in ultrasmall silicon-on-insulator wire waveguides,” Opt. Express 12, 3713–3718 (2004). [CrossRef]
  3. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005). [CrossRef]
  4. H. Rong, Y. H. Kuo, S. Xu, A. Liu, R. Jones, and M. Paniccia, “Monolithic integrated Raman silicon laser,” Opt. Express 14, 6705–6712 (2006). [CrossRef]
  5. J. Y. Lee, L. Yin, G. P. Agrawal, and P. M. Fauchet, “Ultrafast optical switching based on nonlinear polarization rotation in silicon waveguides,” Opt. Express 18, 11514–11523 (2010). [CrossRef]
  6. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006). [CrossRef]
  7. X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics 4, 557–560 (2010). [CrossRef]
  8. R. L. Espinola, J. I. Dadap, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, “C-band wavelength conversion in silicon photonic wire waveguides,” Opt. Express 13, 4341–4349 (2005). [CrossRef]
  9. H. Rong, Y.-H. Kuo, A. Liu, and M. Paniccia, “High efficiency wavelength conversion of 10 Gb/s data in silicon waveguides,” Opt. Express 14, 1182–1188 (2006). [CrossRef]
  10. Y.-H. Kuo, H. Rong, V. Sih, S. Xu, M. Paniccia, and O. Cohen, “Demonstration of wavelength conversion at 40 Gb/s data rate in silicon waveguides,” Opt. Express 14, 11721–11726 (2006). [CrossRef]
  11. M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express 15, 12949–12958 (2007). [CrossRef]
  12. W. Mathlouthi, H. Rong, and M. Paniccia, “Characterization of efficient wavelength conversion by four-wave mixing in sub-micron silicon waveguides,” Opt. Express 16, 16735–16745 (2008). [CrossRef]
  13. A. C. Turner-Foster, M. A. Foster, R. Salem, A. L. Gaeta, and M. Lipson, “Frequency conversion over two-thirds of an octave in silicon nanowaveguides,” Opt. Express 18, 1904–1908 (2010). [CrossRef]
  14. S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4, 561–564 (2010). [CrossRef]
  15. R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, “Anti-Stokes Raman conversion in silicon waveguides,” Opt. Express 11, 2862–2872 (2003). [CrossRef]
  16. V. Raghunathan, R. Claps, D. Dimitropoulos, and B. Jalali, “Parametric Raman wavelength conversion in scaled silicon waveguides,” J. Lightwave Technol. 23, 2094–2102 (2005). [CrossRef]
  17. P. V. Koonath, D. R. Solli, and B. Jalali, “High efficiency CARS conversion in silicon,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CThE3.
  18. N. Vermeulen, J. E. Sipe, Y. Lefevre, C. Debaes, and H. Thienpont, “Wavelength conversion based on Raman- and non-resonant four-wave mixing in silicon nanowire rings without dispersion engineering,” IEEE J. Sel. Top. Quantum Electron. 17, 1078–1091 (2011). [CrossRef]
  19. N. Vermeulen, C. Debaes, P. Muys, and H. Thienpont, “Mitigating heat dissipation in Raman lasers using coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 99, 093903 (2007). [CrossRef]
  20. N. Vermeulen, C. Debaes, and H. Thienpont, “The behavior of CARS in anti-Stokes Raman converters operating at exact Raman resonance,” IEEE J. Quantum Electron. 44, 1248–1255 (2008). [CrossRef]
  21. D. Dimitropoulos, V. Raghunathan, R. Claps, and B. Jalali, “Phase-matching and nonlinear optical processes in silicon waveguides,” Opt. Express 12, 149–160 (2004). [CrossRef]
  22. A. C. Turner, C. Manolatou, B. S. Schmidt, and M. Lipson, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express 14, 4357–4362 (2006). [CrossRef]
  23. S. P. Chan, C. E. Png, S. T. Lim, G. T. Reed, and V. M. N. Passaro, “Single-more and polarization-independent silicon-on-insulator waveguides with small cross section,” J. Lightwave Technol. 23, 2103–2111 (2005). [CrossRef]
  24. The Scott Partnership, “Mid-infrared lasers,” Nat. Photonics 4, 576–577 (2010). [CrossRef]
  25. Q. Lin, J. Zhang, P. M. Fauchet, and G. P. Agrawal, “Ultrabroadband parametric generation and wavelength conversion in silicon waveguides,” Opt. Express 14, 4786–4799 (2006). [CrossRef]
  26. Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modeling and applications,” Opt. Express 15, 16604–16644 (2007). [CrossRef]
  27. P. Colman, C. Husko, S. Combrie, I. Sagnes, C. W. Wong, and A. D. Rossi, “Temporal solitons and pulse compression in photonic crystal waveguides,” Nat. Photonics 4, 862–868 (2010). [CrossRef]
  28. B. Jalali, V. Raghunathan, R. Shori, S. Fathpour, D. Dimitropoulos, and O. Stafsudd, “Prospects for silicon mid-IR Raman lasers,” IEEE J. Quantum Electron. 12, 1618–1627 (2006). [CrossRef]
  29. A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850–2200 nm,” Appl. Phys. Lett. 90, 191104 (2007). [CrossRef]
  30. F. Li, S. D. Jackson, C. Grillet, E. Magi, D. Hudson, S. J. Madden, Y. Moghe, C. O’Brien, A. Read, S. G. Duvall, P. Atanackovic, B. J. Eggleton, and D. J. Moss, “Low propagation loss silicon-on-sapphire waveguides for the mid-infrared,” Opt. Express 19, 15212–15220 (2011). [CrossRef]
  31. S. Pearl, N. Rotenberg, and H. M. Driel, “Three photon absorption in silicon for 2300–3300 nm,” Appl. Phys. Lett. 93, 131102 (2008). [CrossRef]
  32. Z. Wang, H. Liu, N. Huang, Q. Sun, J. Wen, and X. Li, “Influence of three-photon absorption on mid-infrared cross-phase modulation in silicon-on-sapphire waveguides,” Opt. Express 21, 1840–1848 (2013). [CrossRef]
  33. R. Dekker, A. Driessen, T. Wahlbrink, C. Moormann, J. Niehusmann, and M. Forst, “Ultrafast Kerr-induced all-optical wavelength conversion in silicon waveguides using 1.55 μm,” Opt. Express 14, 8336–8346 (2006). [CrossRef]
  34. T. E. Murphy, software available at http://www.photonics.umd.edu .
  35. E.-K. Tien, Y. Huang, S. Gao, Q. Song, F. Qian, S. K. Kalyoncu, and O. Boyraz, “Discrete parametric band conversion in silicon for mid-infrared applications,” Opt. Express 18, 21981–21989 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited