OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 33 — Nov. 20, 2013
  • pp: 8117–8121

Dark-field imaging by active polymer slab waveguide

Yikai Chen, Douguo Zhang, Lu Han, Xiangxian Wang, Liangfu Zhu, Pei Wang, and Hai Ming  »View Author Affiliations


Applied Optics, Vol. 52, Issue 33, pp. 8117-8121 (2013)
http://dx.doi.org/10.1364/AO.52.008117


View Full Text Article

Enhanced HTML    Acrobat PDF (542 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A dark-field imaging technique taking advantage of the active polymer slab waveguide (APSW) is experimentally investigated. The dye molecules (Rhodamine 6G, Rh6G) are doped in the polymer film for the launching of surface waves on the APSW, such as the surface plasmon polaritons on the Ag–polymer–air interface, evanescent fields at the polymer–air interface by the total internal reflection, or the guided modes. The localized surface waves will not radiate into the far-field space directly. When the specimens are placed on the surface of the APSW, these surface waves will be scattered to the far-field region, which forms the dark-field image of the specimen. Experimental results show that usage of APSW leads to high-contrast dark-field images with the conventional optical microscope system. The polymer film involved in the proposed dark-field microscopy brings about the merits of reduced roughness, good stability, bio-compatibility, and shorter wavelength of the illumination light source.

© 2013 Optical Society of America

OCIS Codes
(110.0180) Imaging systems : Microscopy
(180.2520) Microscopy : Fluorescence microscopy
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

History
Original Manuscript: August 14, 2013
Revised Manuscript: October 20, 2013
Manuscript Accepted: October 21, 2013
Published: November 18, 2013

Virtual Issues
Vol. 9, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Yikai Chen, Douguo Zhang, Lu Han, Xiangxian Wang, Liangfu Zhu, Pei Wang, and Hai Ming, "Dark-field imaging by active polymer slab waveguide," Appl. Opt. 52, 8117-8121 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-33-8117


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. A. Murray and W. L. Barnes, “Plasmonic materials,” Adv. Mater. 19, 3771–3782 (2007). [CrossRef]
  2. J. Ye, F. F. Wen, S. Heidar, J. Britt-Lassiter, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS,” Nano Lett. 12, 1660–1667 (2012).
  3. J. A. Fan, K. Bao, J. Britt Lassiter, J. M. Bao, N. J. Halas, P. Nordlander, and F. Capasso, “Near-normal incidence dark-field microscopy: applications to nanoplasmonic spectroscopy,” Nano Lett. 12, 2817–2821 (2012).
  4. S. M. Prince and W. G. McGuigan, “Alignment and tolerancing of a cardioid condenser,” Proc. SPIE 6676, 66760K (2007).
  5. http://en.wikipedia.org/wiki/Dark_field_microscopy .
  6. H. Hu, C. Ma, and Z. Liu, “Plasmonic dark field microscopy,” Appl. Phys. Lett. 96, 113107 (2010). [CrossRef]
  7. T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B 75, 245405 (2007).
  8. A. Hohenau, J. R. Krenn, A. L. Stepanov, A. Drezet, H. Ditlbacher, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Dielectric optical elements for surface plasmons,” Opt. Lett. 30, 893–895 (2005). [CrossRef]
  9. K. Hassan, A. Bouhelier, T. Bernardin, G. Colas-des-Francs, J.-C. Weeber, and A. Dereux, “Momentum-space spectroscopy for advanced analysis of dielectric-loaded surface plasmon polariton coupled and bent waveguides,” Phys. Rev. B 87, 195428 (2013).
  10. S. P. Frisbie, C. Chesnutt, M. E. Holtz, A. Krishnan, L. Grave de Peralta, and A. A. Bernussi, “Image formation in wide-field microscopes based on leakage of surface plasmon-coupled fluorescence,” IEEE Photon. J. 1, 153–162 (2009).
  11. D. Zhang, X. Yuan, and A. Bouhelier, “Direct image of surface-plasmon-coupled emission by leakage radiation microscopy,” Appl. Opt. 49, 875–879 (2010). [CrossRef]
  12. N. Hartmann, G. Piredda, J. Berthelot, G. Colas des Francs, A. Bouhelier, and A. Hartschuh, “Launching propagating surface plasmon polaritons by a single carbon nanotube dipolar emitter,” Nano Lett. 12, 177–181 (2012). [CrossRef]
  13. S. P. Frisbie, C. Chesnutt, J. Ajimo, A. A. Bernussi, and L. Grave de Peralta, “Characterization of polarization states of surface plasmon polaritons modes by Fourier-plane leakage microscopy,” Opt. Commun. 283, 5255–5260 (2010). [CrossRef]
  14. A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B 149, 220–229 (2008). [CrossRef]
  15. J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: a new method for high sensitivity detection,” Biochem. Biophys. Res. Commun. 307, 435–439 (2003).
  16. D. Zhang, Q. Fu, M. Yi, X. Wang, Y. Chen, P. Wang, Y. Lu, P. Yao, and H. Ming, “Excitation of broadband surface plasmons with dye molecules,” Plasmonics 7, 309–312 (2012). [CrossRef]
  17. Q. Q. Cheng, T. Li, R. Y. Guo, L. Li, S. M. Wang, and S. N. Zhu, “Direct observation of guided-mode interference in polymer-loaded plasmonic waveguide,” Appl. Phys. Lett. 101, 171116 (2012). [CrossRef]
  18. D. G. Zhang, X.-C. Yuan, G. H. Yuan, P. Wang, and H. Ming, “Directional fluorescence emission characterized with leakage radiation microscopy,” J. Opt. 12, 035002 (2010). [CrossRef]
  19. C. J. Regan, D. Dominguez, L. Grave de Peralta, and A. A. Bernussi, “Far-field optical superlens without metal,” J. Appl. Phys. 113, 183105 (2013). [CrossRef]
  20. F. Chasles, B. Dubertret, and A. C. Boccara, “Optimization and characterization of a structured illumination microscope,” Opt. Express 15, 16130–16140 (2007). [CrossRef]
  21. L. H. Schaefer, D. Schuster, and J. Schaffer, “Structured illumination microscopy: artifact analysis and reduction utilizing a parameter optimization approach,” J. Microsc. 216,165–174 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited