OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 33 — Nov. 20, 2013
  • pp: 8134–8141

Acousto-optic wide band optical low-frequency shifter

Anthony Dieulangard, Jean-Claude Kastelik, Samuel Dupont, and Joseph Gazalet  »View Author Affiliations


Applied Optics, Vol. 52, Issue 33, pp. 8134-8141 (2013)
http://dx.doi.org/10.1364/AO.52.008134


View Full Text Article

Enhanced HTML    Acrobat PDF (997 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A wide bandwidth tunable optical low-frequency shifter is presented in this work. It is based on two acousto-optic devices operating in tandem. The relevant parameters of the specific configurations of acousto-optic interactions in paratellurite material are detailed. Results from numerical computations leading to the practical design parameters are given. The low-frequency shifter has been experimentally tested at a visible wavelength λ0=514nm and a high efficiency (>60%) has been measured. The tuning capability of the optical shifter covers a bandwidth Δf=26MHz.

© 2013 Optical Society of America

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(160.1050) Materials : Acousto-optical materials
(160.1190) Materials : Anisotropic optical materials
(230.1040) Optical devices : Acousto-optical devices
(130.5440) Integrated optics : Polarization-selective devices

ToC Category:
Materials

History
Original Manuscript: June 28, 2013
Revised Manuscript: October 18, 2013
Manuscript Accepted: October 25, 2013
Published: November 19, 2013

Citation
Anthony Dieulangard, Jean-Claude Kastelik, Samuel Dupont, and Joseph Gazalet, "Acousto-optic wide band optical low-frequency shifter," Appl. Opt. 52, 8134-8141 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-33-8134


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Shang, S. Yan, L. Ren, S. Zhao, and Y. He, “Experiment study on heterodyne laser Doppler vibrometry with three different structures,” Proc. SPIE 8332, 833212 (2011). [CrossRef]
  2. Y. Fu, M. Guo, and P. B. Phua, “Spatially encoded multibeam laser Doppler vibrometry using a single photodetector,” Opt. Lett. 35, 1356–1358 (2010). [CrossRef]
  3. R. P. Kaczmarek, T. Rogowski, A. J. Antonczak, and K. M. Abramski, “Laser Doppler vibrometry with acoustooptic frequency shift,” Opt. Appl. 34, 373–384 (2004).
  4. S. Dupont and J. C. Kastelik, “Demonstration of a tunable two-frequency projected fringe pattern with acousto-optic deflectors,” Rev. Sci. Instrum. 79, 056101 (2008). [CrossRef]
  5. S. H. Dupont, J. C. Kastelik, and M. Pommeray, “Structured light fringe projection setup using optimized acousto-optic deflectors,” IEEE/ASME Trans. Mechatronics 15, 557–560 (2010).
  6. T. Xie, Z. Wang, and Y. Pan, “High-speed optical coherence tomography using fiberoptic acousto-optic phase modulation,” Opt. Express 11, 3210–3219 (2003). [CrossRef]
  7. M. Pircher, E. Goetzinger, R. Leitgeb, and C. K. Hitzenberger, “Transversal phase resolved polarization sensitive optical coherence tomography,” Phys. Med. Biol. 49, 1257–1263 (2004). [CrossRef]
  8. J. Y. Ha, M. Shishkov, M. Colice, W. Y. Oh, H. Yoo, L. Liu, G. J. Tearney, and B. E. Bouma, “Compensation of motion artifacts in catheter based optical frequency domain imaging,” Opt. Express 18, 11418–11427 (2010). [CrossRef]
  9. M. Atlan, B. C. Forget, F. Ramaz, A. C. Boccara, and M. Gross, “Pulsed acousto-optic imaging in dynamic scattering media with heterodyne parallel speckle detection,” Opt. Lett. 30, 1360–1362 (2005). [CrossRef]
  10. T.-C. Poon and T. Kim, “Optical image recognition of three-dimensional objects,” Appl. Opt. 38, 370–381 (1999). [CrossRef]
  11. S. Y. Suck, S. Collin, N. Bardou, Y. D. Wilde, and G. Tessier, “Imaging the three-dimensional scattering pattern of plasmonic nanodisk chains by digital heterodyne holography,” Opt. Lett. 36, 849–851 (2011). [CrossRef]
  12. F. Ye, B. Qi, and L. Qian, “Continuous-wave fiber cavity ring-down measurements using frequency-shifted interferometry,” Opt. Lett. 36, 2080–2082 (2011). [CrossRef]
  13. B. Borchers, S. Koke, A. Husakou, J. Herrmann, and G. Steinmeyer, “Carrier-envelope phase stabilization with sub-10 as residual timing jitter,” Opt. Lett. 36, 4146–4148 (2011). [CrossRef]
  14. X. Wu, S. Nuccio, O. F. Yilmaz, J. Wang, A. Bogoni, and A. E. Willner, “Controllable optical demultiplexing using continuously tunable optical parametric delay at 160  Gbit/s with <0.1  ps resolution,” Opt. Lett. 34, 3926–3928 (2009). [CrossRef]
  15. F. Masia, W. Langbein, and P. Borri, “Measurement of the dynamics of plasmons inside individual gold nanoparticles using a femtosecond phase-resolved microscope,” Phys. Rev. B 85, 235403 (2012). [CrossRef]
  16. A. Barocsi, L. Jakab, and P. I. Richter, “Efficient, extremely low frequency acousto-optic shifter for optical heterodyning applications,” Proc. SPIE 2240, 108–113 (1994). [CrossRef]
  17. M. G. Gazalet, M. Ravez, F. Haine, C. Bruneel, and E. Bridoux, “Acousto-optic low-frequency shifter,” Appl. Opt. 33, 1293–1298 (1994). [CrossRef]
  18. A. H. Bachmann, R. A. Leitgeb, and T. Lasser, “Heterodyne Fourier domain optical coherence tomography for full range probing with high axial resolution,” Opt. Express 14, 1487–1496 (2006). [CrossRef]
  19. W. J. Schwenger and J. M. Higbie, “High-speed acousto-optic shutter with no optical frequency shift,” Rev. Sci. Instrum. 83, 083110 (2012). [CrossRef]
  20. C. H. Chang, R. K. Heilmann, M. L. Schattenburg, and P. Glenn, “Design of a double-pass shear mode acousto-optic modulator,” Rev. Sci. Instrum. 79, 033104 (2008). [CrossRef]
  21. J. C. Kastelik, H. Benaissa, S. Dupont, and M. Pommeray, “Acousto-optic tunable filter using double interaction for sidelobe reduction,” Appl. Opt. 48, C4–C10 (2009). [CrossRef]
  22. V. Kotov, J. Stiens, G. Shkerdin, and R. Vounckx, “Cascade acousto-optic frequency shift of light,” J. Opt. A 3, 517–520 (2001). [CrossRef]
  23. A. H. Mack, M. K. Trias, and S. G. J. Mochrie, “Precision optical trapping via a programmable direct-digital-synthesis-based controller for acousto-optic deflectors,” Rev. Sci. Instrum. 80, 016101 (2009). [CrossRef]
  24. V. Balakshy and A. Voloshin, “Acousto-optic interaction in crystals with large acoustic anisotropy,” Opt. Spectrosc. 110, 788–794 (2011). [CrossRef]
  25. H. Ogi, M. Fukunaga, M. Hirao, and H. Ledbetter, “Elastic constants, internal friction, and piezoelectric coefficient of alpha-TeO2,” Phys. Rev. B 69, 024104 (2004). [CrossRef]
  26. A. P. Gouzoulis and D. R. Pape, Design and Fabrication of Acousto-optics Devices (Dekker, 1994).
  27. J. C. Kastelik, S. Dupont, K. B. Yushkov, and J. Gazalet, “Frequency and angular bandwidth of acousto-optic deflectors with ultrasonic walk-off,” Ultrasonics 53, 219–224 (2013). [CrossRef]
  28. V. B. Voloshinov, K. B. Yushkov, and B. B. J. Linde, “Improvement in performance of a TeO2 acousto-optic imaging spectrometer,” J. Opt. A 9, 341–347 (2007). [CrossRef]
  29. I. C. Chang, “Acousto optic tunable filters,” Opt. Eng. 20, 206824 (1981). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited