OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 35 — Dec. 10, 2013
  • pp: 8586–8616

Theory and design of line-to-point focus solar concentrators with tracking secondary optics

Thomas Cooper, Gianluca Ambrosetti, Andrea Pedretti, and Aldo Steinfeld  »View Author Affiliations

Applied Optics, Vol. 52, Issue 35, pp. 8586-8616 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2481 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The two-stage line-to-point focus solar concentrator with tracking secondary optics is introduced. Its design aims to reduce the cost per m 2 of collecting aperture by maintaining a one-axis tracking trough as the primary concentrator, while allowing the thermodynamic limit of concentration in 2D of 215 × to be significantly surpassed by the implementation of a tracking secondary stage. The limits of overall geometric concentration are found to exceed 4000 × when hollow secondary concentrators are used, and 6000 × when the receiver is immersed in a dielectric material of refractive index n = 1.5 . Three exemplary collectors, with geometric concentrations in the range of 500 1500 × are explored and their geometric performance is ascertained by Monte Carlo ray-tracing. The proposed solar concentrator design is well-suited for large-scale applications with discrete, flat receivers requiring concentration ratios in the range 500 2000 × .

© 2013 Optical Society of America

OCIS Codes
(080.0080) Geometric optics : Geometric optics
(220.1770) Optical design and fabrication : Concentrators
(350.6050) Other areas of optics : Solar energy
(080.4035) Geometric optics : Mirror system design
(080.4298) Geometric optics : Nonimaging optics

ToC Category:
Geometric Optics

Original Manuscript: September 25, 2013
Manuscript Accepted: October 20, 2013
Published: December 9, 2013

Thomas Cooper, Gianluca Ambrosetti, Andrea Pedretti, and Aldo Steinfeld, "Theory and design of line-to-point focus solar concentrators with tracking secondary optics," Appl. Opt. 52, 8586-8616 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Brunotte, A. Goetzberger, and U. Blieske, “Two-stage concentrator permitting concentration factors up to 300× with one-axis tracking,” Sol. Energy 56, 285–300 (1996). [CrossRef]
  2. A. Mohr, T. Roth, and S. W. Glunz, “BICON: high concentration PV using one-axis tracking and silicon concentrator cells,” Prog. Photovoltaics 14, 663–674 (2006). [CrossRef]
  3. A. Rabl, “Comparison of solar concentrators,” Sol. Energy 18, 93–111 (1976).
  4. T. Cooper, M. Pravettoni, M. Cadruvi, G. Ambrosetti, and A. Steinfeld, “The effect of irradiance mismatch on a semi-dense array of triple-junction concentrator cells,” Sol. Energy Mater. Sol. Cells 116, 238–251 (2013). [CrossRef]
  5. T. Cooper, G. Ambrosetti, A. Petretti, and A. Steinfeld, “A 500  kW 550X quasi-2-axis tracking CPV system based on an inflated parabolic trough with tracking secondary optics,” presented at the 21st International Photovoltaic Science and Engineering Conference (PVSEC 21), Fukuoka, Japan, 28November–2 December, 2011.
  6. P. Good, G. Zanganeh, G. Ambrosetti, M. C. Barbato, A. Pedretti, and A. Steinfeld, “Towards a commercial parabolic trough CSP system using air as heat transfer fluid,” SolarPACES 2013, Las Vegas, Nevada (2013).
  7. J. A. Duffie and W. A. Beckman, Solar Engineering of Thermal Processes (Wiley, 2006).
  8. D. Y. Goswami, F. Kreith, and J. F. Kreider, Principles of Solar Engineering (CRC Press, 2000).
  9. A. Rabl, Active Solar Collectors and Their Applications (Oxford University, 1985).
  10. R. Winston, J. C. Minano, P. G. Benitez, N. Shatz, and J. C. Bortz, Nonimaging Optics (Elsevier Academic, 2005).
  11. P. Bendt, A. Rabl, H. W. Gaul, and K. A. Reed, “Optical analysis and optimization of line focus solar collectors,” (Solar Energy Research Institute, U.S. Department of Energy, 1979).
  12. A. N. Cox, Allen’s Astrophysical Quantities, 4th ed. (Springer, 2000).
  13. D. R. Mills and G. L. Morrison, “Compact linear fresnel reflector solar thermal powerplants,” Sol. Energy 68, 263–283 (2000). [CrossRef]
  14. R. Winston and W. Zhang, “Pushing concentration of stationary solar concentrators to the limit,” Opt. Express 18, A64–A72 (2010). [CrossRef]
  15. M. Collares-Pereira, J. M. Gordon, A. Rabl, and R. Winston, “High concentration two-stage optics for parabolic trough solar collectors with tubular absorber and large rim angle,” Sol. Energy 47, 457–466 (1991). [CrossRef]
  16. H. Ries and J. M. Gordon, “Double-tailored imaging concentrators,” Proc. SPIE 3781, 129–134 (1999). [CrossRef]
  17. J. M. Gordon and D. Feuermann, “Optical performance at the thermodynamic limit with tailored imaging designs,” Appl. Opt. 44, 2327–2331 (2005). [CrossRef]
  18. D. Lynden-Bell, “Exact optics: a unification of optical telescope design,” Mon. Not. R. Astron. Soc. 334, 787–796 (2002). [CrossRef]
  19. N. Ostroumov, J. M. Gordon, and D. Feuermann, “Panorama of dual-mirror aplanats for maximum concentration,” Appl. Opt. 48, 4926–4931 (2009). [CrossRef]
  20. P. Benítez, J. C. Miñano, and J. Blen, “Squeezing the étendue,” in Illumination Engineering: Design with Nonimaging Optics, R. J. Koshel, ed. (Wiley, 2013).
  21. G. Ambrosetti, J. Chambers, T. Cooper, and A. Pedretti, “Solar collector having a pivotable concentrator arrangement,” WO patent application2013/078567 A2 (filed 6June2013), assigned to Airlight Energy IP SA.
  22. J. C. Miñano and J. C. González, “New method of design of nonimaging concentrators,” Appl. Opt. 31, 3051–3060 (1992). [CrossRef]
  23. J. Chaves, Introduction to Nonimaging Optics (CRC Press, 2008).
  24. J. C. Miñano, P. Benítez, A. Cvetkovic, and R. Mohedano, “SMS 3D design method,” in Illumination Engineering: Design with Nonimaging Optics, R. J. Koshel, ed. (IEEE, 2013).
  25. R. Leutz and A. Suzuki, Nonimaging Fresnel Lenses: Design and Performance of Solar Concentrators (Springer, 2001).
  26. I. M. Bassett and G. W. Forbes, “A new class of ideal non-imaging transformers,” Opt. Acta 29, 1271–1282 (1982). [CrossRef]
  27. R. P. Friedman and J. M. Gordon, “Optical designs for ultrahigh-flux infrared and solar energy collection: monolithic dielectric tailored edge-ray concentrators,” Appl. Opt. 35, 6684–6691 (1996). [CrossRef]
  28. R. Winston, “Dielectric compound parabolic concentrators,” Appl. Opt. 15, 291–292 (1976). [CrossRef]
  29. X. H. Ning, R. Winston, and J. Ogallagher, “Dielectric totally internally reflecting concentrators,” Appl. Opt. 26, 300–305 (1987). [CrossRef]
  30. J. C. Miñano, P. Benítez, and J. C. González, “RX: a nonimaging concentrator,” Appl. Opt. 34, 2226–2235 (1995). [CrossRef]
  31. J. C. Miñano, J. C. González, and P. Benítez, “A high-gain, compact, nonimaging concentrator: RXI,” Appl. Opt. 34, 7850–7856 (1995). [CrossRef]
  32. J. Chaves and M. Collares-Pereira, “Ultra flat ideal concentrators of high concentration,” Sol. Energy 69, 269–281 (2000). [CrossRef]
  33. J. Petrasch, “A free and open source Monte Carlo ray-tracing program for concentrating solar energy research,” in Proceedings of the ASME 4th International Conference on Energy Sustainability (ES2010) (ASME, 2010).
  34. T. Cooper, F. Dähler, G. Ambrosetti, A. Pedretti, and A. Steinfeld, “Performance of compound parabolic concentrators with polygonal apertures,” Solar Energy 95, 308–318 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited