OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 4 — Feb. 1, 2013
  • pp: 567–578

Seeing through turbidity with harmonic holography [Invited]

Ye Pu and Demetri Psaltis  »View Author Affiliations


Applied Optics, Vol. 52, Issue 4, pp. 567-578 (2013)
http://dx.doi.org/10.1364/AO.52.000567


View Full Text Article

Acrobat PDF (759 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The ability to see inside the body noninvasively is indispensable in modern biology and medicine. Optical approaches to such abilities are of rapidly growing interest because of their nonionizing nature and low cost. However, the problem of opacity due to the optical turbidity of tissues must be addressed before optical means become practical. Harmonic holography amalgamates the capability of holographic phase conjugation with the contrast-forming mechanism of second-harmonic generation, which provides a unique opportunity for imaging through a turbid medium. In this review we give accounts of the effort of imaging through turbid media using harmonic holographic phase conjugation.

© 2013 Optical Society of America

OCIS Codes
(030.6140) Coherence and statistical optics : Speckle
(070.5040) Fourier optics and signal processing : Phase conjugation
(290.4210) Scattering : Multiple scattering
(090.1995) Holography : Digital holography
(160.4236) Materials : Nanomaterials
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:
Holography

History
Original Manuscript: October 1, 2012
Manuscript Accepted: October 1, 2012
Published: January 24, 2013

Virtual Issues
(2013) Advances in Optics and Photonics
Vol. 8, Iss. 3 Virtual Journal for Biomedical Optics

Citation
Ye Pu and Demetri Psaltis, "Seeing through turbidity with harmonic holography [Invited]," Appl. Opt. 52, 567-578 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-4-567


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. D. J. Brenner and E. J. Hall, “Computed tomography—An increasing source of radiation exposure,” N. Engl. J. Med. 357, 2277–2284 (2007). [CrossRef]
  2. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999). [CrossRef]
  3. C. Haisch, “Optical tomography,” Annu. Rev. Anal. Chem. 5, 57–77 (2012). [CrossRef]
  4. A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6, 283–292 (2012). [CrossRef]
  5. Y. Pu, M. Centurion, and D. Psaltis, “Harmonic holography: a new holographic principle,” Appl. Opt. 47, A103–A110 (2008). [CrossRef]
  6. M. C. W. van Rossum and T. M. Nieuwenhuizen, “Multiple scattering of classical waves: microscopy, mesoscopy, and diffusion,” Rev. Mod. Phys. 71, 313–371 (1999). [CrossRef]
  7. C. Balas, “Review of biomedical optical imaging-a powerful, non-invasive, non-ionizing technology for improving in vivo diagnosis,” Meas. Sci. Technol. 20, 104020 (2009). [CrossRef]
  8. P. W. Anderson, “Absence of diffusion in certain random lattices,” Phys. Rev. 109, 1492–1505 (1958). [CrossRef]
  9. L. V. Wang and H. Wu, Biomedical Optics: Principles and Imaging (Wiley, 2007).
  10. S. C. Feng, C. Kane, P. A. Lee, and A. D. Stone, “Correlations and fluctuations of coherent wave transmission through disordered media,” Phys. Rev. Lett. 61, 834–837 (1988). [CrossRef]
  11. I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61, 2328–2331 (1988). [CrossRef]
  12. E. N. Leith and J. Upatniek, “Holographic imagery through diffusing media,” J. Opt. Soc. Am. 56, 523–523 (1966). [CrossRef]
  13. I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32, 2309–2311 (2007). [CrossRef]
  14. M. Cui and C. H. Yang, “Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation,” Opt. Express 18, 3444–3455 (2010). [CrossRef]
  15. C. L. Hsieh, Y. Pu, R. Grange, and D. Psaltis, “Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media,” Opt. Express 18, 12283–12290 (2010). [CrossRef]
  16. V. Ntziachristos, C. Bremer, and R. Weissleder, “Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging,” Eur. Radiol. 13, 195–208 (2003).
  17. T. F. Massoud and S. S. Gambhir, “Molecular imaging in living subjects: seeing fundamental biological processes in a new light,” Genes Dev. 17, 545–580 (2003). [CrossRef]
  18. R. Weissleder, “Scaling down imaging: molecular mapping of cancer in mice,” Nat. Rev. Cancer 2, 11–18 (2002). [CrossRef]
  19. S. B. Colak, M. B. van der Mark, G. W. Hooft, J. H. Hoogenraad, E. S. van der Linden, and F. A. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Sel. Top. Quantum Electron. 5, 1143–1158 (1999). [CrossRef]
  20. R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: a case study with comparison to MRI,” Med. Phys. 32, 1128–1139 (2005). [CrossRef]
  21. A. Corlu, R. Choe, T. Durduran, M. A. Rosen, M. Schweiger, S. R. Arridge, M. D. Schnall, and A. G. Yodh, “Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans,” Opt. Express 15, 6696–6716 (2007). [CrossRef]
  22. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991). [CrossRef]
  23. J. M. Schmitt, A. Knuttel, and M. Yadlowsky, “Confocal microscopy in turbid media,” J. Opt. Soc. Am. A 11, 2226–2235 (1994). [CrossRef]
  24. F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2, 932–940 (2005). [CrossRef]
  25. L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991). [CrossRef]
  26. A. Bassi, D. Brida, C. D’Andrea, G. Valentini, R. Cubeddu, S. De Silvestri, and G. Cerullo, “Time-gated optical projection tomography,” Opt. Lett. 35, 2732–2734 (2010). [CrossRef]
  27. M. J. Niedre, R. H. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. USA 105, 19126–19131 (2008). [CrossRef]
  28. B. Zhang, X. Cao, F. Liu, X. Liu, X. Wang, and J. Bai, “Early-photon fluorescence tomography of a heterogeneous mouse model with the telegraph equation,” Appl. Opt. 50, 5397–5407 (2011). [CrossRef]
  29. P. Theer and W. Denk, “On the fundamental imaging-depth limit in two-photon microscopy,” J. Opt. Soc. Am. A 23, 3139–3149 (2006). [CrossRef]
  30. S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010). [CrossRef]
  31. V. Venugopal, J. Chen, F. Lesage, and X. Intes, “Full-field time-resolved fluorescence tomography of small animals,” Opt. Lett. 35, 3189–3191 (2010). [CrossRef]
  32. M. Kempe, M. Larionov, D. Zaslavsky, and A. Z. Genack, “Acousto-optic tomography with multiply scattered light,” J. Opt. Soc. Am. A 14, 1151–1158 (1997). [CrossRef]
  33. B. H. Yuan, S. Uchiyama, Y. Liu, K. T. Nguyen, and G. Alexandrakis, “High-resolution imaging in a deep turbid medium based on an ultrasound-switchable fluorescence technique,” Appl. Phys. Lett. 101, 033703 (2012). [CrossRef]
  34. J. Gamelin, A. Aguirre, A. Maurudis, F. Huang, D. Castillo, L. V. Wang, and Q. Zhu, “Curved array photoacoustic tomographic system for small animal imaging,” J. Biomed. Opt. 13, 024007 (2008). [CrossRef]
  35. Y. T. Lin, L. Bolisay, M. Ghijsen, T. C. Kwong, and G. Gulsen, “Temperature-modulated fluorescence tomography in a turbid media,” Appl. Phys. Lett. 100, 073702 (2012). [CrossRef]
  36. E. G. van Putten, D. Akbulut, J. Bertolotti, W. L. Vos, A. Lagendijk, and A. P. Mosk, “Scattering lens resolves sub-100 nm structures with visible light,” Phys. Rev. Lett. 106, 193905 (2011). [CrossRef]
  37. X. H. Gao, L. L. Yang, J. A. Petros, F. F. Marshal, J. W. Simons, and S. M. Nie, “In vivo molecular and cellular imaging with quantum dots,” Curr. Opin. Biotechnol. 16, 63–72 (2005). [CrossRef]
  38. B. N. G. Giepmans, S. R. Adams, M. H. Ellisman, and R. Y. Tsien, “The fluorescent toolbox for assessing protein location and function,” Science 312, 217–224 (2006). [CrossRef]
  39. S. Weiss, “Fluorescence spectroscopy of single biomolecules,” Science 283, 1676–1683 (1999). [CrossRef]
  40. P. A. Franken, G. Weinreich, C. W. Peters, and A. E. Hill, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119(1961). [CrossRef]
  41. L. Le Xuan, C. Zhou, A. Slablab, D. Chauvat, C. Tard, S. Perruchas, T. Gacoin, P. Villeval, and J. F. Roch, “Photostable second-harmonic generation from a single KTiOPO4 nanocrystal for nonlinear microscopy,” Small 4, 1332–1336 (2008). [CrossRef]
  42. P. Pantazis, J. Maloney, D. Wu, and S. E. Fraser, “Second harmonic generating (SHG) nanoprobes for in vivo imaging,” Proc. Natl. Acad. Sci. USA 107, 14535–14540 (2010). [CrossRef]
  43. P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82, 493–508 (2002). [CrossRef]
  44. A. Zoumi, A. Yeh, and B. J. Tromberg, “Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence,” Proc. Natl. Acad. Sci. USA 99, 11014–11019 (2002). [CrossRef]
  45. W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. USA 100, 7075–7080 (2003). [CrossRef]
  46. S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, “Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres,” Biophys. J. 90, 693–703 (2006). [CrossRef]
  47. S. Y. Chen, C. S. Hsieh, S. W. Chu, C. Y. Lin, C. Y. Ko, Y. C. Chen, H. J. Tsai, C. H. Hu, and C. K. Sun, “Noninvasive harmonics optical microscopy for long-term observation of embryonic nervous system development in vivo,” J. Biomed. Opt. 11, 054022 (2006). [CrossRef]
  48. D. A. Dombeck, K. A. Kasischke, H. D. Vishwasrao, M. Ingelsson, B. T. Hyman, and W. W. Webb, “Uniform polarity microtubule assemblies imaged in native brain tissue by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. USA 100, 7081–7086 (2003). [CrossRef]
  49. A. Khatchatouriants, A. Lewis, Z. Rothman, L. Loew, and M. Treinin, “GFP is a selective non-linear optical sensor of electrophysiological processes in Caenorhabditis elegans,” Biophys. J. 79, 2345–2352 (2000). [CrossRef]
  50. I. Asselberghs, C. Flors, L. Ferrighi, E. Botek, B. Champagne, H. Mizuno, R. Ando, A. Miyawaki, J. Hofkens, M. Van der Auweraer, and K. Clays, “Second-harmonic generation in GFP-like proteins,” J. Am. Chem. Soc. 130, 15713–15719 (2008). [CrossRef]
  51. P. P. Provenzano, K. W. Eliceiri, J. M. Campbell, D. R. Inman, J. G. White, and P. J. Keely, “Collagen reorganization at the tumor-stromal interface facilitates local invasion,” BMC Med. 4, 38 (2006). [CrossRef]
  52. T. Stylianopoulos, B. Diop-Frimpong, L. L. Munn, and R. K. Jain, “Diffusion anisotropy in collagen gels and tumors: the effect of fiber network orientation,” Biophys. J. 99, 3119–3128 (2010). [CrossRef]
  53. W. Mohler, A. C. Millard, and P. J. Campagnola, “Second harmonic generation imaging of endogenous structural proteins,” Methods 29, 97–109 (2003). [CrossRef]
  54. P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol. 21, 1356–1360 (2003). [CrossRef]
  55. L. T. Cheng, W. Tam, S. R. Marder, A. E. Stiegman, G. Rikken, and C. W. Spangler, “Experimental investigations of organic molecular nonlinear optical polarizabilities. 2. A study of conjugation dependences,” J. Phys. Chem. 95, 10643–10652 (1991). [CrossRef]
  56. K. Clays and A. Persoons, “Hyper-Rayleigh scattering in solution,” Phys. Rev. Lett. 66, 2980–2983 (1991). [CrossRef]
  57. M. Szablewski, P. R. Thomas, A. Thornton, D. Bloor, G. H. Cross, J. M. Cole, J. A. K. Howard, M. Malagoli, F. Meyers, J. L. Bredas, W. Wenseleers, and E. Goovaerts, “Highly dipolar, optically nonlinear adducts of tetracyano-p-quinodimethane: synthesis, physical characterization, and theoretical aspects,” J. Am. Chem. Soc. 119, 3144–3154 (1997). [CrossRef]
  58. T. Verbiest, S. Houbrechts, M. Kauranen, K. Clays, and A. Persoons, “Second-order nonlinear optical materials: recent advances in chromophore design,” J. Mater. Chem. 7, 2175–2189 (1997). [CrossRef]
  59. N. J. Long, “Organometallic compounds for nonlinear optics—The search for en-light-enment,” Angew. Chem.-Int. Edit. 34, 21–38 (1995). [CrossRef]
  60. I. R. Whittall, A. M. McDonagh, M. G. Humphrey, and M. Samoc, “Organometallic complexes in nonlinear optics I: second-order nonlinearities,” in Advances in Organometallic Chemistry, F. G. A. Stone and R. West, eds. (Elsevier, 1998), Vol 42, pp. 291–362.
  61. J. J. Wolff and R. Wortmann, “Organic materials for second-order non-linear optics,” Adv. Phys. Org. Chem. 32, 121–217 (1999). [CrossRef]
  62. S. Di Bella, “Second-order nonlinear optical properties of transition metal complexes,” Chem. Soc. Rev. 30, 355–366 (2001). [CrossRef]
  63. B. J. Coe, “Switchable nonlinear optical metallochromophores with pyridinium electron acceptor groups,” Accounts Chem. Res. 39, 383–393 (2006). [CrossRef]
  64. M. Bates, B. Huang, G. T. Dempsey, and X. W. Zhuang, “Multicolor super-resolution imaging with photo-switchable fluorescent probes,” Science 317, 1749–1753 (2007). [CrossRef]
  65. M. J. Rust, M. Bates, and X. W. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006). [CrossRef]
  66. L. Moreaux, O. Sandre, and J. Mertz, “Membrane imaging by second-harmonic generation microscopy,” J. Opt. Soc. Am. B 17, 1685–1694 (2000). [CrossRef]
  67. P. J. Campagnola, H. A. Clark, W. A. Mohler, A. Lewis, and L. M. Loew, “Second-harmonic imaging microscopy of living cells,” J. Biomed. Opt. 6, 277–286 (2001). [CrossRef]
  68. M. Nuriya, J. Jiang, B. Nemet, K. B. Eisenthal, and R. Yuste, “Imaging membrane potential in dendritic spines,” Proc. Natl. Acad. Sci. USA 103, 786–790 (2006). [CrossRef]
  69. D. A. Dombeck, M. Blanchard-Desce, and W. W. Webb, “Optical recording of action potentials with second-harmonic generation microscopy,” J. Neurosci. 24, 999–1003 (2004). [CrossRef]
  70. Y. R. Shen, “Optical second harmonic generation at interfaces,” Annu. Rev. Phys. Chem. 40, 327–350 (1989). [CrossRef]
  71. J. I. Dadap, J. Shan, K. B. Eisenthal, and T. F. Heinz, “Second-harmonic Rayleigh scattering from a sphere of centrosymmetric material,” Phys. Rev. Lett. 83, 4045–4048 (1999). [CrossRef]
  72. J. I. Dadap, J. Shan, and T. F. Heinz, “Theory of optical second-harmonic generation from a sphere of centrosymmetric material: small-particle limit,” J. Opt. Soc. Am. B 21, 1328–1347 (2004). [CrossRef]
  73. B. Z. Huo, X. H. Wang, S. J. Chang, and M. Zeng, “Second harmonic generation of a single centrosymmetric nanosphere illuminated by tightly focused cylindrical vector beams,” J. Opt. Soc. Am. B 29, 1631–1640 (2012). [CrossRef]
  74. G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P. F. Brevet, “Multipolar second-harmonic generation in noble metal nanoparticles,” J. Opt. Soc. Am. B 25, 955–960 (2008). [CrossRef]
  75. S. Kujala, B. K. Canfield, M. Kauranen, Y. Svirko, and J. Turunen, “Multipolar analysis of second-harmonic radiation from gold nanoparticles,” Opt. Express 16, 17196–17208 (2008). [CrossRef]
  76. Y. Zeng, W. Hoyer, J. J. Liu, S. W. Koch, and J. V. Moloney, “Classical theory for second-harmonic generation from metallic nanoparticles,” Phys. Rev. B 79, 235109 (2009). [CrossRef]
  77. J. Butet, I. Russier-Antoine, C. Jonin, N. Lascoux, E. Benichou, and P. F. Brevet, “Sensing with multipolar second harmonic generation from spherical metallic nanoparticles,” Nano Lett. 12, 1697–1701 (2012). [CrossRef]
  78. I. Russier-Antoine, E. Benichou, G. Bachelier, C. Jonin, and P. F. Brevet, “Multipolar contributions of the second harmonic generation from silver and gold nanoparticles,” J. Phys. Chem. C 111, 9044–9048 (2007). [CrossRef]
  79. F. W. Vance, B. I. Lemon, and J. T. Hupp, “Enormous hyper-Rayleigh scattering from nanocrystalline gold particle suspensions,” J. Phys. Chem. B 102, 10091–10093 (1998). [CrossRef]
  80. M. Chandra and P. K. Das, “Small-particle limit” in the second harmonic generation from noble metal nanoparticles,” Chem. Phys. 358, 203–208 (2009). [CrossRef]
  81. J. Butet, J. Duboisset, G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P. F. Brevet, “Optical second harmonic generation of single metallic nanoparticles embedded in a homogeneous medium,” Nano Lett. 10, 1717–1721 (2010). [CrossRef]
  82. I. Russier-Antoine, C. Jonin, J. Nappa, E. Benichou, and P. F. Brevet, “Wavelength dependence of the hyper Rayleigh scattering response from gold nanoparticles,” J. Chem. Phys. 120, 10748–10752 (2004). [CrossRef]
  83. B. K. Canfield, S. Kujala, K. Jefimovs, J. Turunen, and M. Kauranen, “Linear and nonlinear optical responses influenced by broken symmetry in an array of gold nanoparticles,” Opt. Express 12, 5418–5423 (2004). [CrossRef]
  84. B. K. Canfield, H. Husu, J. Laukkanen, B. F. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers,” Nano Lett. 7, 1251–1255 (2007). [CrossRef]
  85. V. K. Valev, N. Smisdom, A. V. Silhanek, B. De Clercq, W. Gillijns, M. Ameloot, V. V. Moshchalkov, and T. Verbiest, “Plasmonic ratchet wheels: switching circular dichroism by arranging chiral nanostructures,” Nano Lett. 9, 3945–3948 (2009). [CrossRef]
  86. M. J. Huttunen, G. Bautista, M. Decker, S. Linden, M. Wegener, and M. Kauranen, “Nonlinear chiral imaging of subwavelength-sized twisted-cross gold nanodimers (Invited),”Opt. Mater. Express 1, 46–56 (2011). [CrossRef]
  87. Y. Zhang, N. K. Grady, C. Ayala-Orozco, and N. J. Halas, “Three-dimensional nanostructures as highly efficient generators of second harmonic light,” Nano Lett. 11, 5519–5523(2011). [CrossRef]
  88. S. W. Chan, R. Barille, J. M. Nunzi, K. H. Tam, Y. H. Leung, W. K. Chan, and A. B. Djurisic, “Second harmonic generation in zinc oxide nanorods,” Appl. Phys. B 84, 351–355 (2006). [CrossRef]
  89. K. Geren, S. W. Liu, H. J. Zhou, Y. Zhang, R. Tian, and M. Xiao, “Second-order susceptibilities of ZnO nanorods from forward second-harmonic scattering,” J. Appl. Phys. 105, 063531 (2009). [CrossRef]
  90. R. Le Dantec, Y. Mugnier, G. Djanta, L. Bonacina, J. Extermann, L. Badie, C. Joulaud, M. Gerrmann, D. Rytz, J. P. Wolf, and C. Galez, “Ensemble and individual characterization of the nonlinear optical properties of ZnO and BaTiO3 nanocrystals,” J. Phys. Chem. C 115, 15140–15146 (2011). [CrossRef]
  91. B. E. Urban, J. Lin, O. Kumar, K. Senthilkumar, Y. Fujita, and A. Neogi, “Optimization of nonlinear optical properties of ZnO micro and nanocrystals for biophotonics,” Opt. Mater. Express 1, 658–669 (2011). [CrossRef]
  92. R. Grange, J. W. Choi, C. L. Hsieh, Y. Pu, A. Magrez, R. Smajda, L. Forro, and D. Psaltis, “Lithium niobate nanowires synthesis, optical properties, and manipulation,” Appl. Phys. Lett. 95, 143105 (2009). [CrossRef]
  93. F. Dutto, C. Raillon, K. Schenk, and A. Radenovic, “Nonlinear optical response in single alkaline niobate nanowires,” Nano Lett. 11, 2517–2521 (2011). [CrossRef]
  94. Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. D. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447, 1098–1101 (2007). [CrossRef]
  95. Y. Wang, Z. Chen, Z. Z. Ye, and J. Y. Huang, “Synthesis and second harmonic generation response of KNbO3 nanoneedles,” J. Cryst. Growth 341, 42–45 (2012). [CrossRef]
  96. P. Wnuk, L. Le Xuan, A. Slablab, C. Tard, S. Perruchas, T. Gacoin, J. F. Roch, D. Chauvat, and C. Radzewicz, “Coherent nonlinear emission from a single KTP nanoparticle with broadband femtosecond pulses,” Opt. Express 17, 4652–4658(2009). [CrossRef]
  97. E. V. Rodriguez, C. B. de Araujo, A. M. Brito-Silva, V. I. Ivanenko, and A. A. Lipovskii, “Hyper-Rayleigh scattering from BaTiO3 and PbTiO3 nanocrystals,” Chem. Phys. Lett. 467, 335–338 (2009). [CrossRef]
  98. C. L. Hsieh, R. Grange, Y. Pu, and D. Psaltis, “Three-dimensional harmonic holographic microcopy using nanoparticles as probes for cell imaging,” Opt. Express 17, 2880–2891 (2009). [CrossRef]
  99. L. Bonacina, Y. Mugnier, F. Courvoisier, R. Le Dantec, J. Extermann, Y. Lambert, V. Boutou, C. Galez, and J. P. Wolf, “Polar Fe(IO3)3 nanocrystals as local probes for nonlinear microscopy,” Appl. Phys. B 87, 399–403 (2007). [CrossRef]
  100. J. Extermann, L. Bonacina, E. Cuna, C. Kasparian, Y. Mugnier, T. Feurer, and J. P. Wolf, “Nanodoublers as deep imaging markers for multi-photon microscopy,” Opt. Express 17, 15342–15349 (2009). [CrossRef]
  101. R. Grange, T. Lanvin, C. L. Hsieh, Y. Pu, and D. Psaltis, “Imaging with second-harmonic radiation probes in living tissue,” Biomed. Opt. Express 2, 2532–2539 (2011). [CrossRef]
  102. A. V. Kachynski, A. N. Kuzmin, M. Nyk, I. Roy, and P. N. Prasad, “Zinc oxide nanocrystals for nonresonant nonlinear optical microscopy in biology and medicine,” J. Phys. Chem. C 112, 10721–10724 (2008). [CrossRef]
  103. D. Staedler, T. Magouroux, R. Hadji, C. Joulaud, J. Extermann, S. Schwungi, S. Passemard, C. Kasparian, G. Clarke, M. Gerrmann, R. Le Dantec, Y. Mugnier, D. Rytz, D. Ciepielewski, C. Galez, S. Gerber-Lemaire, L. Juillerat-Jeanneret, L. Bonacina, and J. P. Wolf, “Harmonic nanocrystals for biolabeling: a survey of optical properties and biocompatibility,” ACS Nano 6, 2542–2549 (2012). [CrossRef]
  104. C. L. Hsieh, R. Grange, Y. Pu, and D. Psaltis, “Bioconjugation of barium titanate nanocrystals with immunoglobulin G antibody for second harmonic radiation imaging probes,” Biomaterials 31, 2272–2277 (2010). [CrossRef]
  105. M. Geissbuehler, L. Bonacina, V. Shcheslavskiy, N. L. Bocchio, S. Geissbuehler, M. Leutenegger, I. Marki, J. P. Wolf, and T. Lasser, “Nonlinear correlation spectroscopy (NLCS),” Nano Lett. 12, 1668–1672 (2012). [CrossRef]
  106. M. Jacobsohn and U. Banin, “Size dependence of second harmonic generation in CdSe nanocrystal quantum dots,” J. Phys. Chem. B 104, 1–5 (2000). [CrossRef]
  107. A. V. Baranov, K. Inoue, K. Toba, A. Yamanaka, V. I. Petrov, and A. V. Fedorov, “Resonant hyper-Raman and second-harmonic scattering in a CdS quantum-dot system,” Phys. Rev. B 53, R1721–R1724 (1996). [CrossRef]
  108. M. Zielinski, D. Oron, D. Chauvat, and J. Zyss, “Second-harmonic generation from a single core/shell quantum dot,” Small 5, 2835–2840 (2009). [CrossRef]
  109. A. A. Umar, A. H. Reshak, M. Oyama, and K. J. Plucinski, “Fluorescent and nonlinear optical features of CdTe quantum dots,” J. Mater. Sci.: Mater. Electron. 23, 546–550 (2012). [CrossRef]
  110. R. Chen, S. Crankshaw, T. Tran, L. C. Chuang, M. Moewe, and C. Chang-Hasnain, “Second-harmonic generation from a single wurtzite GaAs nanoneedle,” Appl. Phys. Lett. 96, 051110 (2010). [CrossRef]
  111. F. Wang, P. J. Reece, S. Paiman, Q. Gao, H. H. Tan, and C. Jagadish, “Nonlinear optical processes in optically trapped InP nanowires,” Nano Lett. 11, 4149–4153 (2011). [CrossRef]
  112. Y. Pu, R. Grange, C. L. Hsieh, and D. Psaltis, “Nonlinear optical properties of core-shell nanocavities for enhanced second-harmonic generation,” Phys. Rev. Lett. 104, 207402 (2010). [CrossRef]
  113. Y. Pu, C. L. Hsieh, R. Grange, and D. Psaltis, “Harmonic holography,” in Advances in Imaging and Electron Physics, P. W. Hawkes, ed. (Elsevier, 2010), Vol 160, pp. 75–112.
  114. O. Masihzadeh, P. Schlup, and R. A. Bartels, “Label-free second harmonic generation holographic microscopy of biological specimens,” Opt. Express 18, 9840–9851(2010). [CrossRef]
  115. D. G. Winters, D. R. Smith, P. Schlup, and R. A. Bartels, “Measurement of orientation and susceptibility ratios using a polarization-resolved second-harmonic generation holographic microscope,” Biomed. Opt. Express 3, 2004–2011 (2012). [CrossRef]
  116. E. Shaffer, P. Marquet, and C. Depeursinge, “Second harmonic phase microscopy of collagen fibers,”Proc. SPIE 7903, 79030G (2011).
  117. K. B. Shi, H. F. Li, Q. Xu, D. Psaltis, and Z. W. Liu, “Coherent anti-Stokes Raman holography for chemically selective single-shot nonscanning 3D imaging,” Phys. Rev. Lett. 104, 093902 (2010). [CrossRef]
  118. K. B. Shi, P. S. Edwards, J. Hu, Q. Xu, Y. M. Wang, D. Psaltis, and Z. W. Liu, “Holographic coherent anti-Stokes Raman scattering bio-imaging,” Biomed. Opt. Express 3, 1744–1749 (2012). [CrossRef]
  119. C. L. Hsieh, Y. Pu, R. Grange, G. Laporte, and D. Psaltis, “Imaging through turbid layers by scanning the phase conjugated second harmonic radiation from a nanoparticle,” Opt. Express 18, 20723–20731 (2010). [CrossRef]
  120. X. Yang, C. L. Hsieh, Y. Pu, and D. Psaltis, “Three-dimensional scanning microscopy through thin turbid media,” Opt. Express 20, 2500–2506 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited