OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 4 — Feb. 1, 2013
  • pp: 613–624

Silicon nanophotonic devices for chip-scale optical communication applications [Invited]

Y. Fainman, M. P. Nezhad, D. T. H. Tan, K. Ikeda, O. Bondarenko, and A. Grieco  »View Author Affiliations


Applied Optics, Vol. 52, Issue 4, pp. 613-624 (2013)
http://dx.doi.org/10.1364/AO.52.000613


View Full Text Article

Enhanced HTML    Acrobat PDF (3950 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper reviews recent work in the area of silicon photonic devices and circuits for monolithic and heterogeneous integration of circuits and systems on a chip. In this context, it presents fabrication results for producing low-loss silicon waveguides without etching. Resonators and add–drop distributed filters utilizing sidewall modulation fabricated in a single lithography and etching step are demonstrated. It also presents an optical pulse compressor that monolithically integrates self-phase modulation and anomalous dispersion compensation devices on a silicon chip. As an example of heterogeneous integration, we demonstrate vertical emitting metallo-dielectric nanolasers integrated onto a silicon platform. Future research directions toward large-scale photonic circuits and systems on a chip also are discussed.

© 2013 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(130.3130) Integrated optics : Integrated optics materials
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(230.1480) Optical devices : Bragg reflectors
(230.7390) Optical devices : Waveguides, planar
(250.3140) Optoelectronics : Integrated optoelectronic circuits

ToC Category:
Optical Devices

History
Original Manuscript: September 5, 2012
Manuscript Accepted: September 5, 2012
Published: January 25, 2013

Virtual Issues
(2013) Advances in Optics and Photonics

Citation
Y. Fainman, M. P. Nezhad, D. T. H. Tan, K. Ikeda, O. Bondarenko, and A. Grieco, "Silicon nanophotonic devices for chip-scale optical communication applications [Invited]," Appl. Opt. 52, 613-624 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-4-613


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006). [CrossRef]
  2. R. Soref and J. Lorenzo, “All-silicon active and passive guided-wave components for λ=1.3 and 1.6 μm,” IEEE J. Quantum Electron. 22, 873–879 (1986). [CrossRef]
  3. B. Weiss, G. Reed, S. Toh, R. Soref, and F. Namavar, “Optical wave-guides in SIMOX structures,” IEEE Photon. Technol. Lett. 3, 19–21 (1991). [CrossRef]
  4. M. Bruel, “Silicon-on-insulator material technology,” Electron. Lett. 31, 1201–1202 (1995). [CrossRef]
  5. B. Jalali, S. Yegnanarayanan, T. Yoon, T. Yoshimoto, I. Rendina, and F. Coppinger, “Advances in silicon-on-insulator optoelectronics,” IEEE J. Sel. Top. Quantum Electron. 4, 938–947 (1998). [CrossRef]
  6. G. Li, J. Yao, H. Thacker, A. Mekis, X. Zheng, I. Shubin, Y. Luo, J. Lee, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “Ultralow-loss, high-density SOI optical waveguide routing for macrochip interconnects,” Opt. Express 20, 12035–12039 (2012). [CrossRef]
  7. D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50  Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24, 234–236 (2012). [CrossRef]
  8. K. Padmaraju, N. Ophir, Q. Xu, B. Schmidt, J. Shakya, S. Manipatruni, M. Lipson, and K. Bergman, “Error-free transmission of microring-modulated BPSK,” Opt. Express 20, 8681–8688 (2012). [CrossRef]
  9. D. T. H. Tan, P. C. Sun, and Y. Fainman, “Monolithic nonlinear pulse compressor on a silicon chip,” Nat. Commun. 1, 116 (2010). [CrossRef]
  10. H. S. Rong, R. Jones, A. S. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005). [CrossRef]
  11. R. E. Camacho-Aguilera, Y. Cai, N. Patel, J. T. Bessette, M. Romagnoli, L. C. Kimerling, and J. Michel, “An electrically pumped germanium laser,” Opt. Express 20, 11316–11320 (2012). [CrossRef]
  12. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14, 9203–9210 (2006). [CrossRef]
  13. M. P. Nezhad, O. Bondarenko, M. Khajavikhan, A. Simic, and Y. Fainman, “Etch-free low loss silicon waveguides using hydrogen silsesquioxane oxidation masks,” Opt. Express 19, 18827–18832 (2011). [CrossRef]
  14. H.-C. Kim, K. Ikeda, and Y. Fainman, “Resonant waveguide device with vertical gratings,” Opt. Lett. 32, 539–541 (2007). [CrossRef]
  15. H.-C. Kim, K. Ikeda, and Y. Fainman, “Tunable transmission resonant filter and modulator with vertical gratings,” J. Lightwave Technol. 25, 1147–1151 (2007). [CrossRef]
  16. K. Ikeda, M. Nezhad, and Y. Fainman, “Wavelength selective coupler with vertical gratings on silicon chip,” Appl. Phys. Lett. 92, 201111 (2008). [CrossRef]
  17. D. T. H. Tan, K. Ikeda, S. Zamek, A. Mizrahi, M. P. Nezhad, A. V. Krishnamoorthy, K. Raj, J. E. Cunningham, X. Zheng, I. Shubin, Y. Luo, and Y. Fainman, “Wide bandwidth, low loss 1 by 4 wavelength division multiplexer on silicon for optical interconnects,” Opt. Express 19, 2401–2409 (2011). [CrossRef]
  18. O. Bondarenko, A. Simic, Q. Gu, J. H. Lee, B. Slutsky, M. P. Nezhad, and Y. Fainman, “Wafer bonded subwavelength metallo-dielectric laser,” IEEE Photonics J. 3, 608–616 (2011). [CrossRef]
  19. J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M. Lipson, “Low loss etchless silicon photonic waveguides,” Opt. Express 17, 4752–4757 (2009). [CrossRef]
  20. B. Desiatov, I. Goykhman, and U. Levy, “Demonstration of submicron square-like silicon waveguide using optimized LOCOS process,” Opt. Express 18, 18592–18597 (2010). [CrossRef]
  21. W. R. McKinnon, D.-X. Xu, C. Storey, E. Post, A. Densmore, A. Delage, P. Waldron, J. H. Schmid, and S. Janz, “Extracting coupling and loss coefficients from a ring resonator,” Opt. Express 17, 18971–18982 (2009). [CrossRef]
  22. D. T. H. Tan, K. Ikeda, R. E. Saperstein, B. Slutsky, and Y. Fainman, “Chip-scale dispersion engineering using chirped vertical gratings,” Opt. Lett. 33, 3013–3015 (2008). [CrossRef]
  23. D. T. H. Tan, K. Ikeda, and Y. Fainman, “Cladding-modulated Bragg gratings in silicon waveguides,” Opt. Lett. 34, 1357–1359 (2009). [CrossRef]
  24. D. T. H. Tan, K. Ikeda, and Y. Fainman, “Coupled chirped vertical gratings for on-chip group velocity dispersion engineering,” Appl. Phys. Lett. 95, 141109 (2009). [CrossRef]
  25. S. Zamek, D. T. H. Tan, M. Khajavikhan, M. Ayache, M. P. Nezhad, and Y. Fainman, “Compact chip-scale filter based on curved waveguide Bragg gratings,” Opt. Lett. 35, 3477–3479 (2010). [CrossRef]
  26. H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic, 1985).
  27. N. Sankey, D. Prelewitz, and T. Brown, “All-optical switching in a nonlinear periodic-wave-guide structure,” Appl. Phys. Lett. 60, 1427–1429 (1992). [CrossRef]
  28. K. Ikeda and Y. Fainman, “Nonlinear Fabry–Perot resonator with a silicon photonic crystal waveguide,” Opt. Lett. 31, 3486–3488 (2006). [CrossRef]
  29. V. R. Almeida and M. Lipson, “Optical bistability on a silicon chip,” Opt. Lett. 29, 2387–2389 (2004). [CrossRef]
  30. G. Priem, P. Dumon, W. Bogaerts, D. Van Thourhout, G. Morthier, and R. Baets, “Optical bistability and pulsating behaviour in silicon-on-insulator ring resonator structures,” Opt. Express 13, 9623–9628 (2005). [CrossRef]
  31. Q. F. Xu and M. Lipson, “Carrier-induced optical bistability in silicon ring resonators,” Opt. Lett. 31, 341–343(2006). [CrossRef]
  32. A. Grieco, B. Slutsky, D. T. H. Tan, S. Zamek, M. P. Nezhad, and Y. Fainman, “Optical bistability in a silicon waveguide distributed Bragg reflector Fabry–Perot resonator,” J. Lightwave Technol. 30, 2352–2355 (2012). [CrossRef]
  33. Y. Wang, A. Grieco, B. Slutsky, B. Rao, Y. Fainman, and T. Nguyen, “Design and analysis of a narrowband filter for optical platform,” in 2011 IEEE International Conference on Acoustics, Speech, and Signal Processing (IEEE, 2011), pp. 1633–1636.
  34. M. Peccianti, M. Ferrera, L. Razzari, R. Morandotti, B. E. Little, S. T. Chu, and D. J. Moss, “Subpicosecond optical pulse compression via an integrated nonlinear chirper,” Opt. Express 18, 7625–7633 (2010). [CrossRef]
  35. T. J. Karle, Y. J. Chai, C. N. Morgan, I. H. White, and T. F. Krauss, “Observation of pulse compression in photonic crystal coupled cavity waveguides,” J. Lightwave Technol. 22, 514–519 (2004). [CrossRef]
  36. P. Colman, C. Husko, S. Combrié, I. Sagnes, C. W. Wong, and A. D. Rossi, “Temporal solitons and pulse compression in photonic crystal waveguides,” Nat. Photonics 4, 862–868 (2010). [CrossRef]
  37. M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. De Vries, P. J. Van Veldhoven, F. W. M. Van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. De Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007). [CrossRef]
  38. M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4, 395–399 (2010). [CrossRef]
  39. A. Mizrahi, V. Lomakin, B. A. Slutsky, M. P. Nezhad, L. Feng, and Y. Fainman, “Low threshold gain metal coated laser nanoresonators,” Opt. Lett. 33, 1261–1263 (2008). [CrossRef]
  40. D. Pasquariello and K. Hjort, “Plasma-assisted InP-to-Si low temperature wafer bonding,” IEEE J. Sel. Top. Quantum Electron. 8, 118–131 (2002). [CrossRef]
  41. D. Liang, J. E. Bowers, D. C. Oakley, A. Napoleone, D. C. Chapman, C.-L. Chen, P. W. Juodawlkis, and O. Raday, “High-quality 150 mm InP-to-silicon epitaxial transfer for silicon photonic integrated circuits,” Electrochem. Solid State Lett. 12, H101–H104 (2009). [CrossRef]
  42. J. H. Lee, M. Khajavikhan, A. Simic, Q. Gu, O. Bondarenko, B. Slutsky, M. P. Nezhad, and Y. Fainman, “Electrically pumped sub-wavelength metallo-dielectric pedestal pillar lasers,” Opt. Express 19, 21524–21531 (2011). [CrossRef]
  43. I. Richter, P. Sun, F. Xu, and Y. Fainman, “Design considerations of form birefringent microstructures,” Appl. Opt. 34, 2421–2429 (1995). [CrossRef]
  44. F. Xu, R. C. Tyan, P. C. Sun, Y. Fainman, C. C. Cheng, and A. Scherer, “Fabrication, modeling, and characterization of form-birefringent nanostructures,” Opt. Lett. 20, 2457–2459 (1995). [CrossRef]
  45. R. C. Tyan, P. C. Sun, A. Scherer, and Y. Fainman, “Polarizing beam splitter based on the anisotropic spectral reflectivity characteristic of form-birefringent multilayer gratings,” Opt. Lett. 21, 761–763 (1996). [CrossRef]
  46. R. C. Tyan, A. A. Salvekar, H. P. Chou, C. C. Cheng, A. Scherer, P. C. Sun, F. Xu, and Y. Fainman, “Design, fabrication, and characterization of form-birefringent multilayer polarizing beam splitter,” J. Opt. Soc. Am. A 14, 1627–1636 (1997). [CrossRef]
  47. U. Levy and Y. Fainman, “Dispersion properties of inhomogeneous nanostructures,” J. Opt. Soc. Am. A 21, 881–889 (2004). [CrossRef]
  48. U. Levy, C. H. Tsai, L. Pang, and Y. Fainman, “Engineering space-variant inhomogeneous media for polarization control,” Opt. Lett. 29, 1718–1720 (2004). [CrossRef]
  49. U. Levy, M. Nezhad, H. C. Kim, C. H. Tsai, L. Pang, and Y. Fainman, “Implementation of a graded-index medium by use of subwavelength structures with graded fill factor,” J. Opt. Soc. Am. A 22, 724–733 (2005). [CrossRef]
  50. U. Levy, M. Abashin, K. Ikeda, A. Krishnamoorthy, J. Cunningham, and Y. Fainman, “Inhomogenous dielectric metamaterials with space-variant polarizability,” Phys. Rev. Lett. 98, 243901 (2007). [CrossRef]
  51. C. H. Chen, L. Pang, C. H. Tsai, U. Levy, and Y. Fainman, “Compact and integrated TM-pass waveguide polarizer,” Opt. Express 13, 5347–5352 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited