OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 4 — Feb. 1, 2013
  • pp: 824–828

Surface plasmon-enhanced terahertz spectroscopic distinguishing between isomers in powder form

Mingxia He, Jingyan Li, Guanlin Liu, Jiaguang Han, Zhen Tian, Jianqiang Gu, Tao Chen, and Rui Qin  »View Author Affiliations

Applied Optics, Vol. 52, Issue 4, pp. 824-828 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (563 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The effect of a dielectric overlayer on terahertz transmission through a freestanding metallic array of subwavelength holes is experimentally presented. There is a remarkable resonance redshift from 0.600 to 0.498 THz at the surface plasmon (SP) metal–dielectric resonance mode with increasing film thickness. When the overlayer film is thicker than a critical thickness, the resonance frequency becomes steady at the final resonance frequency ωf. On the basis of the dispersion relation of SPs, two kinds of glutamic acid enantiomers are distinguished by use of SP-enhanced terahertz spectra of metallic array of subwavelength holes according to the result of ωf. The terahertz plasmonic hole array with the sensitive nature provides an approach to distinguish trace amount of powder substances, which has a promising application prospect in the fields of public security and biomedical science, such as distinguishing between isomers and identifying expensive medicines and drugs.

© 2013 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:
Surface Plasmons

Original Manuscript: October 2, 2012
Revised Manuscript: December 22, 2012
Manuscript Accepted: December 22, 2012
Published: February 1, 2013

Mingxia He, Jingyan Li, Guanlin Liu, Jiaguang Han, Zhen Tian, Jianqiang Gu, Tao Chen, and Rui Qin, "Surface plasmon-enhanced terahertz spectroscopic distinguishing between isomers in powder form," Appl. Opt. 52, 824-828 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Zhang, “Resonant terahertz transmission in plasmonic arrays of subwavelength holes,” Eur. Phys. J. Appl. Phys. 43, 1–18 (2008). [CrossRef]
  2. D. Qu, D. Grischkowsky, and W. Zhang, “Terahertz transmission properties of thin subwavelength metallic hole arrays,” Opt. Lett. 29, 896–898 (2004). [CrossRef]
  3. A. K. Azad and W. Zhang, “Resonant terahertz transmission in subwavelength metallic hole arrays of sub-skin-depth thickness,” Opt. Lett. 30, 2945–2947 (2005). [CrossRef]
  4. A. K. Azad, Y. Zhao, W. Zhang, and M. He, “Effect of dielectric properties of metals on terahertz transmission in subwavelength hole arrays,” Opt. Lett. 31, 2637–2639 (2006). [CrossRef]
  5. J. G. Rivas, C. Janke, P. Bolivar, and H. Kurz, “Thermal switching of the enhanced transmission of terahertz radiation through subwavelength apertures,” Opt. Lett. 29, 1680–1682 (2004). [CrossRef]
  6. C. Janke, J. G. Rivas, P. H. Bolivar, and H. Kurz, “All-optical switching of the transmission of electromagnetic radiation through subwavelength apertures,” Opt. Lett. 30, 2357–2359 (2005). [CrossRef]
  7. E. Hendry, M. J. Lockyear, J. G. Rivas, L. Kuipers, and M. Bonn, “Ultrafast optical switching of the THz transmission through metallic subwavelength hole arrays,” Phys. Rev. B 75, 235305 (2007). [CrossRef]
  8. A. K. Azad, H. T. Chen, S. R. Kasarla, A. J. Taylor, Z. Tian, X. Lu, W. Zhang, H. Lu, A. C. Gossard, and J. F. O’Hara, “Ultrafast optical control of terahertz surface plasmons in subwavelength hole arrays at room temperature,” Appl. Phys. Lett. 95, 011105 (2009). [CrossRef]
  9. Z. Tian, R. Singh, J. Han, J. Gu, Q. Xing, J. Wu, and W. Zhang, “Terahertz superconducting plasmonic hole array,” Opt. Lett. 35, 3586–3588 (2010). [CrossRef]
  10. J. Wu, H. Dai, H. Wang, B. Jin, T. Jia, C. Zhang, C. Cao, J. Chen, L. Kang, W. Xu, and P. Wu, “Extraordinary terahertz transmission in superconducting subwavelength hole array,” Opt. Express 19, 1101–1106 (2011). [CrossRef]
  11. H. -T. Chen, H. Lu, A. K. Azad, R. D. Averitt, A. C. Gossard, S. A. Trugman, J. F. O’Hara, and A. J. Taylor, “Electronic control of extraordinary terahertz transmission through subwavelength metal hole arrays,” Opt. Express 16, 7641–7649 (2008). [CrossRef]
  12. C. L. Pan, C. F. Hsieh, R. P. Pan, M. Tanaka, F. Miyamaru, M. Tani, and M. Hangyo, “Control of enhanced THz transmission through metallic hole arrays using nematic liquid crystal,” Opt. Express 13, 3921–3930 (2005). [CrossRef]
  13. H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, and K. Kawase, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett. 91, 253901 (2007). [CrossRef]
  14. Z. Tian, J. Han, X. Lu, J. Gu, Q. Xing, and W. Zhang, “Surface plasmon enhanced terahertz spectroscopic distinguishing between isotopes,” Chem. Phys. Lett. 475, 132–134(2009). [CrossRef]
  15. D. Grischkowsky, S. Keiding, M. van Exter, and Ch. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7, 2006–2015 (1990). [CrossRef]
  16. M. He, A. K. Azad, S. Ye, and W. Zhang, “Far-infrared signature of animal tissues characterized by terahertz time-domain spectroscopy,” Opt. Commun. 259, 389–392 (2006). [CrossRef]
  17. H. Raether, “Surface plasmons on smooth surfaces” in Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988), pp. 4–39.
  18. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998). [CrossRef]
  19. V. M. Agranovich and D. L. Mills, Surface Polaritons(North-Holland, 1982).
  20. M. Gong, T. -I. Jeon, and D. Grischkowsky, “THz surface wave collapse on coated metal surfaces,” Opt. Express 17, 10788–17101 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited