OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 4 — Feb. 1, 2013
  • pp: 862–865

Three-component double conjugate zoom lens system from tunable focus lenses

Antonín Mikš and Jiří Novák  »View Author Affiliations


Applied Optics, Vol. 52, Issue 4, pp. 862-865 (2013)
http://dx.doi.org/10.1364/AO.52.000862


View Full Text Article

Enhanced HTML    Acrobat PDF (135 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A method for calculation of paraxial parameters of the double conjugate zoom lens is described. Such an optical system satisfies the requirement that the object, image, and pupil planes are fixed during the change of magnification. Formulas are derived for the calculation of parameters of a three-component double conjugate zoom lens system with tunable focus lenses, which enable us to calculate the optical power of individual optical components with respect to the transverse magnification. The main advantage of such an optical system is the possibility to achieve required zooming properties without any mechanical movement of individual components of the zoom lens.

© 2013 Optical Society of America

OCIS Codes
(080.0080) Geometric optics : Geometric optics
(080.3620) Geometric optics : Lens system design
(220.3620) Optical design and fabrication : Lens system design
(080.2468) Geometric optics : First-order optics

History
Original Manuscript: November 27, 2012
Revised Manuscript: January 6, 2013
Manuscript Accepted: January 7, 2013
Published: February 1, 2013

Citation
Antonín Mikš and Jiří Novák, "Three-component double conjugate zoom lens system from tunable focus lenses," Appl. Opt. 52, 862-865 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-4-862


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Herzberger, Modern Geometrical Optics (Interscience, 1958).
  2. K. Yamaji, Progress in Optics, Vol. VI (North-Holland, 1967).
  3. A. Mikš, J. Novák, and P. Novák, “Method of zoom lens design,” Appl. Opt. 47, 6088–6098 (2008). [CrossRef]
  4. G. Wooters and E. W. Silvertooth, “Optically compensated zoom lens,” J. Opt. Soc. Am. 55, 347–351 (1965). [CrossRef]
  5. A. V. Grinkevich, “Version of an objective with variable focal length,” J. Opt. Technol. 73, 343–345 (2006). [CrossRef]
  6. K. Tanaka, “Recent development of zoom lenses,” Proc. SPIE 3129, 13–22 (1997). [CrossRef]
  7. K. Tanaka, “General paraxial analysis of mechanically compensated zoom lenses,” Proc. SPIE 3749, 286–287 (1999). [CrossRef]
  8. S. Pal and L. Hazra, “Ab initio synthesis of linearly compensated zoom lenses by evolutionary programming,” Appl. Opt. 50, 1434–1441 (2011). [CrossRef]
  9. L. Hazra and S. Pal, “A novel approach for structural synthesis of zoom systems,” Proc. SPIE 7786, 778607 (2010). [CrossRef]
  10. A. Mikš and J. Novák, “Analysis of two-element zoom systems based on variable power lenses,” Opt. Express 18, 6797–6810 (2010). [CrossRef]
  11. H. H. Hopkins, “2-conjugate zoom system,” in Proceedings of the Conference on Optical Instruments and Techniques 1969, J. H. Dickson, ed. (Oriel, 1970), pp. 444–452.
  12. H. H. Hopkins, “Zoom lens system for maintaining two pairs of conjugate planes fixed,” U.S. patent 3619035 (9November1971).
  13. S. J. Dobson, J. Farmer, and G. Smith, “Two-conjugate zoom system for an ophtalmoscope,” Opt. Laser Technol. 23, 79–83 (1991). [CrossRef]
  14. T. Kryszczynski, “Method for solving paraxial pupil problems in zoom systems,” Proc. SPIE 3129, 193–204 (1997). [CrossRef]
  15. M.-S. Yeh, S.-G. Shiue, and M.-H. Lu, “First-order analysis of a two-conjugate zoom system,” Opt. Eng. 35, 3348–3360 (1996). [CrossRef]
  16. M.-S. Yeh, S.-G. Shiue, and M.-H. Lu, “Solution for first-order design of a two-conjugate zoom system,” Opt. Eng. 36, 2261–2267 (1997). [CrossRef]
  17. P. J. Sands, “Many-conjugate zoom systems,” J. Opt. Soc. Am. 62, 1009–1010 (1972). [CrossRef]
  18. F. S. Tsai, S. H. Cho, Y. H. Lo, B. Vasko, and J. Vasko, “Miniaturized universal imaging device using fluidic lens,” Opt. Lett. 33, 291–293 (2008). [CrossRef]
  19. B. H. W. Hendriks, S. Kuiper, M. A. J. van As, C. A. Renders, and T. W. Tukker, “Variable liquid lenses for electronic products,” Proc. SPIE 6034, 603402 (2006). [CrossRef]
  20. http://www.varioptic.com .
  21. http://www.optotune.com/ .
  22. H. W. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84, 4789–4791 (2004). [CrossRef]
  23. M. Ye, M. Noguchi, B. Wang, and S. Sato, “Zoom lens system without moving elements realised using liquid crystal lenses,” Electron. Lett. 45, 646–648 (2009). [CrossRef]
  24. D. Y. Zhang, N. Justis, and Y. H. Lo, “Fluidic adaptive zoom lens with high zoom ratio and widely tunable field of view,” Opt. Commun. 249, 175–182 (2005). [CrossRef]
  25. H. W. Ren and S. T. Wu, “Variable-focus liquid lens,” Opt. Express 15, 5931–5936 (2007). [CrossRef]
  26. G. Beadie, M. L. Sandrock, M. J. Wiggins, R. S. Lepkowicz, J. S. Shirk, M. Ponting, Y. Yang, T. Kazmierczak, A. Hiltner, and E. Baer, “Tunable polymer lens,” Opt. Express 16, 11847–11857 (2008). [CrossRef]
  27. B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: an application of electrowetting,” Eur. Phys. J. E 3, 159–163 (2000). [CrossRef]
  28. B. H. W. Hendriks, S. Kuiper, M. A. J. Van As, C. A. Renders, and T. W. Tukker, “Electrowetting-based variable-focus lens for miniature systems,” Opt. Rev. 12, 255–259 (2005). [CrossRef]
  29. R. Peng, J. Chen, and S. Zhuang, “Electrowetting-actuated zoom lens with spherical-interface liquid lenses,” J. Opt. Soc. Am. A 25, 2644–2650 (2008). [CrossRef]
  30. S. Reichel and H. Zappe, “Design of spherically corrected, achromatic variable-focus liquid lenses,” Opt. Express 15, 14146–14154 (2007). [CrossRef]
  31. R. Peng, J. Chen, C. Zhu, and S. Zhuang, “Design of a zoom lens without motorized optical elements,” Opt. Express 15, 6664–6669 (2007). [CrossRef]
  32. Z. Wang, Y. Xu, and Y. Zhao, “Aberration analyses of liquid zooming lenses without moving parts,” Opt. Commun. 275, 22–26 (2007). [CrossRef]
  33. J.-H. Sun, B.-R. Hsueh, Y.-C. Fang, J. MacDonald, and C.-C. Hu, “Optical design and multiobjective optimization of miniature zoom optics with liquid lens element,” Appl. Opt. 48, 1741–1757 (2009). [CrossRef]
  34. L. Li, Q. H. Wang, and W. Jiang, “Liquid lens with double tunable surfaces for large power tunability and improved optical performance,” J. Opt. 13, 115503 (2011). [CrossRef]
  35. L. Li and Q. H. Wang, “Zoom lens design using liquid lenses for achromatic and spherical aberration corrected target,” Opt. Eng. 51, 043001 (2012). [CrossRef]
  36. A. Miks, J. Novak, and P. Novak, “Generalized refractive tunable-focus lens and its imaging characteristics,” Opt. Express 18, 9034–9047 (2010). [CrossRef]
  37. A. Mikš and J. Novák, “Third-order aberrations of the thin refractive tunable-focus lens,” Opt. Lett. 35, 1031–1033 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited