OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 4 — Feb. 1, 2013
  • pp: B20–B25

Investigation of optical and structural properties of ceramic boron nitride by terahertz time-domain spectroscopy

Mira Naftaly and Jon Leist  »View Author Affiliations


Applied Optics, Vol. 52, Issue 4, pp. B20-B25 (2013)
http://dx.doi.org/10.1364/AO.52.000B20


View Full Text Article

Enhanced HTML    Acrobat PDF (341 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Six types of hexagonal boron nitride are investigated by terahertz time-domain spectroscopy. The loss coefficient is shown to be linear with porosity, while variations in refractive index indicate the distribution of porosity within the structure. Pyrolytic boron nitride is demonstrated to be suitable as a terahertz optical material.

© 2013 Optical Society of America

OCIS Codes
(300.6250) Spectroscopy : Spectroscopy, condensed matter
(300.6495) Spectroscopy : Spectroscopy, teraherz

History
Original Manuscript: August 28, 2012
Revised Manuscript: October 1, 2012
Manuscript Accepted: October 4, 2012
Published: October 29, 2012

Citation
Mira Naftaly and Jon Leist, "Investigation of optical and structural properties of ceramic boron nitride by terahertz time-domain spectroscopy," Appl. Opt. 52, B20-B25 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-4-B20


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Geick, C. H. Perry, and G. Rupprecht, “Normal modes in hexagonal boron nitride,” Phys. Rev. 146, 543–547 (1966). [CrossRef]
  2. “BN—boron nitride,” http://www.ioffe.rssi.ru/SVA/NSM/Semicond/BN/basic.html .
  3. F. P. Bundy and R. H. Wentorf, “Direct transformation of hexagonal boron nitride to denser forms,” J. Chem. Phys. 38, 1144–1149 (1963). [CrossRef]
  4. R. H. Wentorf, “Synthesis of the cubic form of boron nitride,” J. Chem. Phys. 34, 809–812 (1961). [CrossRef]
  5. Y. Kimura, T. Wakabayashi, K. Okada, T. Wada, and H. Nishikawa, “Boron nitride as a lubricant additive,” Wear 232, 199–206 (1999). [CrossRef]
  6. G. Yi and F. Yan, “Effect of hexagonal boron nitride and calcined petroleum coke on friction and wear behavior of phenolic resin-based friction composites,” Mater. Sci. Eng. A 425, 330–338 (2006). [CrossRef]
  7. G. Mariani, “Selection and application of solid lubricants as friction modifiers,” in Lubricant Additives—Chemistry and Applications, L. Rudnick, ed. (CRC Press, Taylor & Francis Group, 2003), pp. 180–182.
  8. J. Leist, M. Sinha, and R. Rojas-Wahl are preparing a manuscript to be called “Light spreading behavior of boron nitride powders.”
  9. S. Rudolph, “Composition and application of coatings based on boron nitride,” Interceram 42, 302–305 (1993).
  10. C. Raman and P. Meneghetti, “Boron nitride finds new applications in thermoplastic compounds,” Plast. Addit. Compound. 10, 26–31 (2008). [CrossRef]
  11. H. I. Faraoun, T. Grosdidier, J.-L. Seichepine, D. Goran, H. Auorag, C. Coddet, J. Zwick, and N. Hopkins, “Improvement of thermally sprayed abradable coating by microstructure control,” Surf. Coat. Technol. 201, 2303–2312 (2006). [CrossRef]
  12. H. Wu and W. Zhang, “Fabrication and properties of ZrB2-SiC-BN machinable ceramics,” J. Eur. Ceram. Soc. 30, 1035–1042 (2010). [CrossRef]
  13. A. J. Gatesman, R. H. Giles, and J. Waldman, “Submillimeter optical properties of hexagonal boron nitride,” J. Appl. Phys. 73, 3962–3966 (1993). [CrossRef]
  14. T. Ishii and T. Sato, “Growth of single crystals of hexagonal boron nitride,” J. Cryst. Growth 61, 689–690 (1983). [CrossRef]
  15. P. J. Gielisse, S. S. Mitra, J. N. Plendl, R. D. Griffis, L. C. Mansur, R. Marshall, and E. A. Pascoe, “Lattice infrared spectra of boron nitride and boron monophosphide,” Phys. Rev. 155, 1039–1046 (1967). [CrossRef]
  16. L. N. Rusanova and L. I. Gorchakova, “Sintering of turbostratic-structure boron nitride powders,” Powder Metall. Met. Ceram. 28, 108–111 (1989).
  17. D. M. Hoffman, G. L. Doll, and P. C. Eklund, “Optical properties of pyrolytic boron nitride in the energy range 0.05–10 eV,” Phys. Rev. B 30, 6051–6056 (1984). [CrossRef]
  18. P. Uhd Jepsen and B. M. Fischer, “Dynamic range in terahertz time-domain transmission and reflection spectroscopy,” Opt. Lett. 30, 29–31 (2005). [CrossRef]
  19. M. Naftaly, J. Leist, and R. Dudley, “Investigation of ceramic boron nitride by terahertz time-domain spectroscopy,” J. Eur. Ceram. Soc. 30, 2691–2697 (2010). [CrossRef]
  20. H. E. Camurlu, N. Sevinc, and Y. Topkaya, “Effect of calcium carbonate addition on carbothermic formation of hexagonal boron nitride,” J. Eur. Ceram. Soc. 28, 679–689 (2008). [CrossRef]
  21. M. Naftaly, P. J. Greenslade, R. E. Miles, and D. Evans, “Low loss nitride ceramics for terahertz windows,” Opt. Mater 31, 1575–1577 (2009).
  22. M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1980).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited