OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 4 — Feb. 1, 2013
  • pp: B33–B39

Optical sensing techniques for temperature measurement

B. Rami Reddy, Indumathi Kamma, and Praveena Kommidi  »View Author Affiliations


Applied Optics, Vol. 52, Issue 4, pp. B33-B39 (2013)
http://dx.doi.org/10.1364/AO.52.000B33


View Full Text Article

Enhanced HTML    Acrobat PDF (1028 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Temperature is an important parameter that needs accurate measurement. Theoretical descriptions of the fluorescence ratio method, fluorescence lifetime sensing, and interferometric methods for temperature measurement are given. Fluorescence lifetime sensing calibration plots have been developed for temperature measurement from 20°C to 600°C using Er3+-doped glass, and from 20°C to 90°C using Sm3+-doped CaF2. Lifetime sensing results of Pr3+-doped YAG and Ho3+-doped fluoride crystals for temperature measurement are also summarized. Mach–Zehnder interferometer measurements revealed that the passage of a 300 mW laser beam of 915 nm changed the temperature of the Yb3+-doped YAG crystal by 7.1°C. The interferometer technique is useful for measuring absolute temperature changes in laser cooling studies.

© 2013 Optical Society of America

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.3940) Instrumentation, measurement, and metrology : Metrology
(120.6780) Instrumentation, measurement, and metrology : Temperature
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence
(280.6780) Remote sensing and sensors : Temperature

History
Original Manuscript: August 30, 2012
Revised Manuscript: November 13, 2012
Manuscript Accepted: November 26, 2012
Published: January 4, 2013

Citation
B. Rami Reddy, Indumathi Kamma, and Praveena Kommidi, "Optical sensing techniques for temperature measurement," Appl. Opt. 52, B33-B39 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-4-B33


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Baker, “Temperature sensing technologies,” AN673 (Microchip Technology, 1998) http://www.microchip.com .
  2. M. A. Soto, T. Nannipierri, A. Signorini, A. Lazzeri, F. Baronti, R. Roncella, G. Bolognini, and F. D. Pasquale, “Raman-based distributed temperature sensor with 1 m spatial resolution over 26 km SMF using low repetition-rate cyclic pulse coding,” Opt. Lett. 36, 2557–2559 (2011). [CrossRef]
  3. Y. Zhan, H. Wu, Q. Yang, S. Xiang, and H. He, “Fiber Bragg grating sensors for high temperature measurement,” Opt. Lasers Eng. 46, 349–354 (2008). [CrossRef]
  4. B. Imangholi, M. P. Hasselbeck, D. A. Bender, C. Wang, M. Sheik-Bahae, R. I. Epstein, and S. Kurtz, “Differential luminescence thermometry in semiconductor laser cooling,” Proc. SPIE 6115, 61151C (2006). [CrossRef]
  5. D. L. Chubb and D. S. Wolford, “Rare-earth optical temperature sensor,” NASA/TM-2000-209657 (NASA, 2000).
  6. S. W. Allison and G. T. Gillies, “Remote thermometry with thermographic phosphors: instrumentation and applications,” Rev. Sci. Instrum. 68, 2615–2650 (1997). [CrossRef]
  7. M. Lapp and D. L. Hartley, “Raman scattering studies of combustion,” Combust. Sci. Technol. 13, 199–210 (1976). [CrossRef]
  8. D. N. Messias, M. V. D. Vermelho, A. S. Gouveia-Neto, and J. S. Aitchison, “All optical integrated upconversion fluorescence based point temperature sensing system using Er3+ doped silica-on-silicon waveguides,” Rev. Sci. Instrum. 73, 476–479 (2002). [CrossRef]
  9. P. Hariharan, Optical Interferometry (Elsevier/Academic, 2003).
  10. D. Wilkie and S. A. Fisher, “Measurement of temperature by Mach–Zehnder interferometry,” Proc. Instn. Mech. Engrs. 178, 461–470 (1963). [CrossRef]
  11. E. Tomita and N. Kawahara, “Temperature measurement of water with a sensor by laser interferometry technique,” presented at the 14th International Symposium on the Application of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, 7–10 July 2008.
  12. S. S. Sandhu and F. J. Weinberg, “A laser interferometer for combustion, aerodynamics and heat transfer studies,” J. Phys. E 5, 1018–1020 (1972). [CrossRef]
  13. T. Sun, Z. Y. Zhang, and K. T. V. Grattan, “Erbium/Ytterbium fluorescence based fiber optic temperature sensor system,” Rev. Sci. Instrum. 71, 4017–4022 (2000). [CrossRef]
  14. D. I. Forsyth, S. A. Wade, T. Sun, X. Chen, and K. T. V. Grattan, “Dual temperature and strain measurement with the combined fluorescence lifetime and Bragg wavelength shift approach in doped optical fiber,” Appl. Opt. 41, 6585–6592 (2002). [CrossRef]
  15. I. Kamma, P. Kommidi, and B. R. Reddy, “Design of a high temperature sensing system using luminescent lifetime measurement,” Rev. Sci. Instrum. 79, 096104 (2008). [CrossRef]
  16. C. W. Farley and B. R. Reddy, “Interferometric measurement of laser heating in praseodymium doped YAG crystal,” Appl. Opt. 50, 526–531 (2011). [CrossRef]
  17. G. H. Dieke, Spectra and Energy Levels of Rare-Earth Ions (Wiley, 1968).
  18. L. A. Riseberg and H. W. Moos, “Multiphonon orbit-lattice relaxation in LaBr3, LaCl3 and LaF3,” Phys. Rev. Lett. 19, 1423–1426 (1967). [CrossRef]
  19. M. J. Weber, “Probabilities for radiative and nonradiative decay of Er3+ in LaF3,” Phys. Rev. 157, 262–272 (1967). [CrossRef]
  20. S. A. Wade, S. F. Collins, and D. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94, 4743–4756 (2003). [CrossRef]
  21. C. B. Layne, W. H. Lowdermilk, and M. J. Weber, “Multiphonon relaxation of rare-earth ions in oxide glasses,” Phys. Rev. B 16, 10–20 (1977). [CrossRef]
  22. C. L. Shepard, B. D. Cannon, and M. A. Khaleel, “Determination of temperature in glass with a fluorescence method,” Int. J. Heat Mass Trans. 44, 4027–4034 (2001). [CrossRef]
  23. G. Paez and M. Strojnik, “Experimental results of ratio based erbium-doped-silica temperature sensor,” Opt. Eng. 42, 1805–1811 (2003). [CrossRef]
  24. I. Kamma and B. R. Bommareddi, “Fluorescence lifetime sensing of temperature with erbium doped lead germano tellurite glass,” in Appled Industrial Optics: Spectroscopy, Imaging and Metrology, OSA Technical Digest (CD) (Optical Society of America, 2010), paper AMA2.
  25. P. Kommidi and B. R. Reddy, “Fluorescence lifetime sensing of temperature,” Proc. SPIE 6377, 63770T (2006). [CrossRef]
  26. H. Loock and P. D. Wentzell, “Detection limits of chemical sensors: applications and misapplications,” Sens. Actuators B 173, 157–163 (2012). [CrossRef]
  27. I. Kamma, P. Kommidi, and B. R. Reddy, “High temperature measurement using luminescence of Pr3+-doped YAG and Ho3+ doped CaF2,” Phys. Stat. Sol. C 6, S187–S190 (2009). [CrossRef]
  28. M. Malinowski, M. F. Joubert, and B. Jacquier, “Dynamics of the IR-to-blue wavelength upconversion in Pr3+-doped yttrium aluminum garnet and LiYF4 crystals,” Phys. Rev. B 50, 12367–12374 (1994). [CrossRef]
  29. VLOC, YAG data sheet, www.vloc.com .
  30. T. Y. Fan and J. L. Daneu, “Thermal coefficients of the optical path length and refractive index in YAG,” Appl. Opt. 37, 1635–1637 (1998). [CrossRef]
  31. R. Wynne, J. L. Daneu, and T. Y. Fan, “Thermal coefficients of the expansion and refractive index in YAG,” Appl. Opt. 38, 3282–3284 (1999). [CrossRef]
  32. C. W. Farley and B. R. Reddy, “Mach–Zehnder interferometric measurement of laser heating/cooling in Yb3+:YAG,” Proc. SPIE 7951, 79510I (2011). [CrossRef]
  33. P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94, 131110 (2009). [CrossRef]
  34. R. Epstein and M. Saheik-bahae, Optical Refrigeration(Wiley-VCH, 2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited