OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 6 — Feb. 20, 2013
  • pp: 1317–1324

Time-dependent theory for random lasers in the presence of an inhomogeneous broadened gain medium such as PbSe quantum dots

Abbas Ghasempour Ardakani, Seyed Mohammad Mahdavi, and Ali Reza Bahrampour  »View Author Affiliations

Applied Optics, Vol. 52, Issue 6, pp. 1317-1324 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (464 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Time-dependent model is presented to simulate random lasers in the presence of an inhomogeneous gain medium. PbSe quantum dots (QDs) with an arbitrary size distribution are treated as an inhomogeneous gain medium. By introducing inhomogeneity of the PbSe QDs in polarization, rate, and Maxwell’s equations, our model is constructed for a one-dimensional disordered system. By employing the finite difference time-domain method, the governing equations are numerically solved and lasing spectra and spatial distribution of the electric field are calculated. The effect of increasing the pumping rate on the laser characteristics is investigated. The results show that the number of lasing modes and their intensities increase with pumping rate. It is also demonstrated that the emission spectra depend on the standard deviation of the Gaussian distribution function. Increasing the standard deviation leads to reduction of the laser intensity.

© 2013 Optical Society of America

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(140.3430) Lasers and laser optics : Laser theory

ToC Category:
Lasers and Laser Optics

Original Manuscript: November 5, 2012
Revised Manuscript: January 6, 2013
Manuscript Accepted: January 17, 2013
Published: February 18, 2013

Abbas Ghasempour Ardakani, Seyed Mohammad Mahdavi, and Ali Reza Bahrampour, "Time-dependent theory for random lasers in the presence of an inhomogeneous broadened gain medium such as PbSe quantum dots," Appl. Opt. 52, 1317-1324 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. S. Letokhov, “Generation of light by a scattering medium with negative resonance absorption,” J. Exp. Theor. Phys. 26, 835–840 (1968).
  2. V. M. Markushev, V. F. Zolim, and C. M. Briskina, “Luminescence and stimulated emission of neodymium in sodium lanthanum molybdate powders,” Sov. J. Quantum Electron. 16, 281–283 (1986). [CrossRef]
  3. N. M. Lawandy, R. M. Balachandra, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368, 436–438 (1994). [CrossRef]
  4. N. M. Lawandy and R. M. Balachandra, “Random laser?” Nature 373, 204–204 (1995). [CrossRef]
  5. H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett. 73, 3656–3658 (1998). [CrossRef]
  6. H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999). [CrossRef]
  7. M. Bahoura, K. J. Morris, and M. A. Noginov, “Threshold and slope efficiency of Nd0.5La0.5Al3(BO3)4 ceramic random laser: effect of the pumped spot size,” Opt. Commun. 201, 405–411 (2002). [CrossRef]
  8. S. Klein, O. Cregut, D. Gindre, A. Boeglin, and K. D. Dorkenoo, “Random laser action in organic film during the photopolymerization process,” Opt. Express 13, 5387–5392 (2005). [CrossRef]
  9. R. C. Polson and Z. V. Vardeny, “Random lasing in human tissues,” Appl. Phys. Lett. 85, 1289–1291 (2004). [CrossRef]
  10. Y. Chen, J. Herrnsdorf, B. Guilhabert, Y. Zhang, I. M. Watson, E. Gu, N. Laurand, and M. D. Dawson, “Colloidal quantum dot random laser,” Opt. Express 19, 2996–3003 (2011). [CrossRef]
  11. D. S. Wiersma and A. Lagendijk, “Light diffusion with gain and random lasers,” Phys. Rev. E 54, 4256–4265 (1996). [CrossRef]
  12. D. Wiersma, “The smallest random laser,” Nature 406, 132–135 (2000). [CrossRef]
  13. X. Y. Jiang and C. M. Soukoulis, “Localized random lasing modes and a path for observing localization,” Phys. Rev. E 65, 025601 (2002). [CrossRef]
  14. Y. M. Xie and Z. D. Lius, “A new physical model on lasing in active random media,” Phys. Lett. A 341, 339–344(2005). [CrossRef]
  15. H. E. Türeci, L. Ge, S. Rotter, and A. D. Stone, “Strong interactions in multimode random lasers,” Science 320, 643–646 (2008). [CrossRef]
  16. A. G. Ardakani, M. G. G. Ali, S. M. Mahdavi, and A. R. Bahrampour, “Mode analysis of fiber Bragg grating random lasers in the presence of mode competition,” Opt. Laser Technol. 44, 969–975 (2012). [CrossRef]
  17. X. Jiang and C. M. Soukoulis, “Time dependent theory for random lasers,” Phys. Rev. Lett. 85, 70–73 (2000). [CrossRef]
  18. P. Sebbah and C. Vanneste, “Random laser in the localized regime,” Phys. Rev. B 66, 144202 (2002). [CrossRef]
  19. C. Wang and J. Liu, “Polarization dependence of lasing modes in two-dimensional random lasers,” Phys. Lett. A 353, 269–272 (2006). [CrossRef]
  20. H. Fujiwara, Y. Hamabata, and K. Sasaki, “Numerical analysis of resonant and lasing properties at a defect region within a random structure,” Opt. Express 17, 3970–3977 (2009). [CrossRef]
  21. J. Lu, J. Liu, H. Liu, K. Wang, and S. Wang, “Theoretical investigation on temporal properties of random lasers pumped by femtosecond-lasing pulses,” Opt. Commun. 282, 2104–2109 (2009). [CrossRef]
  22. A. G. Ardakani, A. R. Bahrampour, S. M. Mahdavi, and M. G. G. Ali, “Numerical study of random lasing in three dimensional amplifying disordered media,” Opt. Commun. 285, 1314–1322 (2012). [CrossRef]
  23. A. Yariv, Optical Electronics (Saunders College Publishing, 1991).
  24. C. Cheng and H. Zhang, “Characteristics of bandwidth, gain and noise of a PbSe quantum dot-doped fiber amplifier,” Opt. Commun. 277, 372–378 (2007). [CrossRef]
  25. C. Cheng, “A multiquantum-dot-doped fiber amplifier with characteristics of broadband, flat gain, and low noise,” J. Lightwave Technol. 26, 1404–1410 (2008). [CrossRef]
  26. C. Cheng, H. Jiang, D. Ma, and X. Cheng, “An optical fiber glass containing PbSe quantum dots,” Opt. Commun. 284, 4491–4495 (2011). [CrossRef]
  27. F.-F. Pang, J. Wang, X.-L. Zeng, Z.-Y. Chen, and T.-Y. Wang, “PbSe quantum dots for an evanescent wave excited fiber amplifier,” J. Shanghai Univ. 15, 119–122 (2011). [CrossRef]
  28. F. Pang, X. Sun, H. Guo, J. Yan, J. Wang, X. Zeng, Z. Chen, and T. Wang, “A PbS quantum dots fiber amplifier excited by evanescent wave,” Opt. Express 18, 14024–14030 (2010). [CrossRef]
  29. A. R. Bahrampour, H. Rooholamini, L. Rahimi, and A. A. Askari, “An inhomogeneous theoretical model for analysis of PbSe quantum-dot-doped fiber amplifier,” Opt. Commun. 282, 4449–4454 (2009). [CrossRef]
  30. S. Hoogland, V. Sukhovatkin, I. Howard, S. Cauchi, L. Levina, and E. H. Sargent, “A solution-processed 1.53 μm quantum dot laser with temperature-invariant emission wavelength,” Opt. Express 14, 3273–3281 (2006). [CrossRef]
  31. J. Yang, J. Heo, T. Zhu, J. Xu, J. Topolancik, F. Vollmer, R. Ilic, and P. Bhattacharya, “Enhanced photoluminescence from embedded PbSe colloidal quantum dots in silicon-based random photonic crystal microcavities,” Appl. Phys. Lett. 92, 261110 (2008). [CrossRef]
  32. J. Heo, Z. Jiang, J. Xu, and P. Bhattacharya, “Coherent and directional emission at 1.55 μm from PbSe colloidal quantum dot electroluminescent device on silicon,” Opt. Express 19, 26394–26398 (2011). [CrossRef]
  33. J. S. Steckel, S. Coe-Sullivan, V. Bulovic, and M. G. Bawendi, “1.3 um to 1.55 um tunable electroluminescence from PbSe quantum dots embedded within an organic device,” Adv. Mater. 15, 1862–1866 (2003). [CrossRef]
  34. J. M. Pietryga, R. D. Schaller, D. Werder, M. H. Stewart, V. I. Klimov, and J. A. Hollingsworth, “Pushing the band gap envelope:  mid-infrared emitting colloidal PbSe quantum dots,” J. Am. Chem. Soc. 126, 11752–11753 (2004). [CrossRef]
  35. H. Cao, J. Y. Xu, and D. Z. Zhang, “Spatial confinement of laser light in active random media,” Phys. Rev. Lett. 84, 5584–5587 (2000). [CrossRef]
  36. R. Frank, A. Lubatsch, and J. Kroha, “Light transport and localization in diffusive random lasers,” J. Opt. A 11, 114012 (2009). [CrossRef]
  37. D. Mogilevtsev, F. A. Pinheiro, R. R. dos Santos, S. B. Cavalcanti, and L. E. Oliveira, “Light propagation and Anderson localization in disordered superlattices containing dispersive metamaterials: effects of correlated disorder,” Phys. Rev. B 84, 094204 (2011). [CrossRef]
  38. C. Vanneste, P. Sebbah, and H. Cao, “Lasing with resonant feedback in weakly scattering random systems,” Phys. Rev. Lett. 98, 143902 (2007). [CrossRef]
  39. C. Jiang, “Ultrabroadband gain characteristics of a quantum-dot-doped fiber amplifier,” IEEE J. Sel. Top. Quantum Electron. 15, 140–144 (2009). [CrossRef]
  40. H. Liu, J. Liu, J. Lu, and K. Wang, “Spectral time evolution of polarized modes under local pumping in a two-dimensional random medium,” J. Opt. A 11, 065202 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited