OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 6 — Feb. 20, 2013
  • pp: 1325–1329

Optical absorption analysis and optimization of gold nanoshells

Paerhatijiang Tuersun and Xiang’e Han  »View Author Affiliations


Applied Optics, Vol. 52, Issue 6, pp. 1325-1329 (2013)
http://dx.doi.org/10.1364/AO.52.001325


View Full Text Article

Enhanced HTML    Acrobat PDF (448 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Gold nanoshells, consisting of a nanoscale dielectric core coated with an ultrathin gold shell, have wide biomedical applications due to their strong optical absorption properties. Gold nanoshells with high absorption efficiencies can help to improve these applications. We investigate the effects of the core material, surrounding medium, core radius, and shell thickness on the absorption spectra of gold nanoshells by using the light-scattering theory of a coated sphere. Our results show that the position and intensity of the absorption peak can be tuned over a wide range by manipulating the above-mentioned parameters. We also obtain the optimal absorption efficiencies and structures of hollow gold nanoshells and gold-coated SiO2 nanoshells embedded in water at wavelengths of 800, 820, and 1064 nm. The results show that hollow gold nanoshells possess the maximum absorption efficiency (5.42) at a wavelength of 800 nm; the corresponding shell thickness and core radius are 4.8 and 38.9 nm, respectively. They can be used as the ideal photothermal conversation particles for biomedical applications.

© 2013 Optical Society of America

OCIS Codes
(160.4760) Materials : Optical properties
(260.3910) Physical optics : Metal optics
(260.5740) Physical optics : Resonance
(290.4020) Scattering : Mie theory
(300.1030) Spectroscopy : Absorption
(160.4236) Materials : Nanomaterials

ToC Category:
Materials

History
Original Manuscript: January 3, 2013
Manuscript Accepted: January 30, 2013
Published: February 19, 2013

Virtual Issues
Vol. 8, Iss. 3 Virtual Journal for Biomedical Optics

Citation
Paerhatijiang Tuersun and Xiang’e Han, "Optical absorption analysis and optimization of gold nanoshells," Appl. Opt. 52, 1325-1329 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-6-1325


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. D. Averitt, S. L. Westcott, and N. J. Halas, “Linear optical properties of gold nanoshells,” J. Opt. Soc. Am. B 16, 1824–1832 (1999). [CrossRef]
  2. S. J. Oldenburg, J. B. Jackson, S. L. Westcott, and N. J. Halas, “Infrared extinction properties of gold nanoshells,” Appl. Phys. Lett. 75, 2897–2899 (1999). [CrossRef]
  3. C. L. Nehl, N. K. Grady, G. P. Goodrich, F. Tam, N. J. Halas, and J. H. Hafner, “Scattering spectra of single gold nanoshells,” Nano Lett. 4, 2355–2359 (2004). [CrossRef]
  4. E. Hao, S. Li, R. C. Bailey, S. Zou, G. C. Schatz, and J. T. Hupp, “Optical properties of metal nanoshells,” J. Phys. Chem. B 108, 1224–1229 (2004). [CrossRef]
  5. O. Peña, U. Pal, L. Rodríguez-Fernández, and A. Crespo-Sosa, “Linear optical response of metallic nanoshells in different dielectric media,” J. Opt. Soc. Am. B 25, 1371–1379 (2008). [CrossRef]
  6. D. Wu, X. Xu, and X. Liu, “Influence of dielectric core, embedding medium and size on the optical properties of gold nanoshells,” Solid State Commun. 146, 7–11 (2008). [CrossRef]
  7. S. R. Sershen, S. L. Westcott, N. J. Halas, and J. L. West, “Temperature-sensitive polymer-nanoshell composites for photothermally modulated drug delivery,” J. Biomed. Mater. Res. 51, 293–298 (2000). [CrossRef]
  8. L. R. Hirsch, J. B. Jackson, A. Lee, N. J. Halas, and J. L. West, “A whole blood immunoassay using gold nanoshells,” Anal. Chem. 75, 2377–2381 (2003). [CrossRef]
  9. L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100, 13549–13554 (2003). [CrossRef]
  10. A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7, 1929–1934 (2007). [CrossRef]
  11. A. L. Aden and M. Kerker, “Scattering of electromagnetic waves from two concentric spheres,” J. Appl. Phys. 22, 1242–1246 (1951). [CrossRef]
  12. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  13. U. Keribig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).
  14. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37, 5271–5283 (1998). [CrossRef]
  15. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]
  16. M. Daimon and A. Masumura, “Measurement of the refractive index of distilled water from the near-infrared region to the ultraviolet region,” Appl. Opt. 46, 3811–3820 (2007). [CrossRef]
  17. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55, 1205–1209 (1965). [CrossRef]
  18. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003). [CrossRef]
  19. X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers Med. Sci. 23, 217–228 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited