OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 8 — Mar. 10, 2013
  • pp: 1716–1724

Temperature dependence of emission and lifetime in Eu3+- and Dy3+-doped GdVO4

Marko G. Nikolić, Dragana J. Jovanović, and Miroslav D. Dramićanin  »View Author Affiliations

Applied Optics, Vol. 52, Issue 8, pp. 1716-1724 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1176 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Eu3+- and Dy3+-doped GdVO4 samples synthesized by a high-temperature solid-state method are investigated by fluorescence spectroscopy at 298–750 K. They demonstrate potential for development as thermographic phosphors because the experimental and theoretical temperature dependence of the intensity ratio of the two lines agrees well. Experimental lifetime measurements recorded at 10–750 K were fitted using three theoretical models: multiphonon relaxation, temperature quenching through the charge transfer (CT) region, and our modified CT model (TDCT), which considers the temperature dependence of CT energy. The TDCT model yields the best results with good agreement between experimental and fitted lifetime data.

© 2013 Optical Society of America

OCIS Codes
(120.6780) Instrumentation, measurement, and metrology : Temperature
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence

ToC Category:

Original Manuscript: September 27, 2012
Revised Manuscript: November 25, 2012
Manuscript Accepted: December 21, 2012
Published: March 8, 2013

Marko G. Nikolić, Dragana J. Jovanović, and Miroslav D. Dramićanin, "Temperature dependence of emission and lifetime in Eu3+- and Dy3+-doped GdVO4," Appl. Opt. 52, 1716-1724 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. M. Yen, S. Shionoya, and H. Yamamoto, Phosphor Handbook, 2nd ed. (CRC, 2007).
  2. K. T. V. Grattan and Z. P. Zhang, “Fiber optic luminescence thermometry,” in Optical Fiber Sensor Technology, K. T. V. Grattan and B. T. Meggitt, eds. (Kluwer, 1998), pp. 133–204.
  3. S. W. Allison and G. T. Gillies, “Remote thermometry with thermographic phosphors: instrumentation and applications,” Rev. Sci. Instrum. 68, 2615–2650 (1997). [CrossRef]
  4. A. Khalid and K. Kontis, “Thermographic phosphors for high temperature measurements: principles, current state of the art and recent applications,” Sensors 8, 5673–5744 (2008). [CrossRef]
  5. M. D. Chambers and D. R. Clarke, “Doped oxides for high-temperature luminescence and lifetime thermometry,” Annu. Rev. Mater. Res. 39, 325–359 (2009). [CrossRef]
  6. M. Aldén, A. Omrane, M. Richter, and G. Särner, “Thermographic phosphors for thermometry: a survey of combustion applications,” Prog. Energy Combust. Sci. 37, 422–461 (2011). [CrossRef]
  7. C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millan, V. S. Amaral, F. Palacio, and L. D. Carlos, “Thermometry at the nanoscale,” Nanoscale 4, 4799–4829 (2012). [CrossRef]
  8. D. Jaque and F. Vetrone, “Luminescence nanothermometry,” Nanoscale 4, 4301–4326 (2012). [CrossRef]
  9. S. F. Collins, G. W. Baxter, S. A. Wade, T. Sun, K. T. V. Grattan, Z. Y. Zhang, and A. W. Palmer, “Comparison of fluorescence-based temperature sensor schemes: theoretical analysis and experimental validation,” J. Appl. Phys. 84, 4649–4655 (1998). [CrossRef]
  10. N. Fuhrmann, E. Baum, J. Brübach, and A. Dreizler, “High-speed phosphor thermometry,” Rev. Sci. Instrum. 82, 104903 (2011). [CrossRef]
  11. E. B. Noel, W. D. Turley, and S. W. Allison, “Thermographic phosphor temperature measurements: commercial and defense-related applications,” in Proceedings of the 40th International Instrumentation Symposium (Instrument Society of America, 1994), pp. 271–288.
  12. S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94, 4743–4756 (2003). [CrossRef]
  13. C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millan, V. S. Amaral, F. Palacio, and L. D. Carlos, “Lanthanide-based luminescent molecular thermometers,” New J. Chem. 35, 1177–1183 (2011). [CrossRef]
  14. W. Ryba-Romanowski, R. Lisiecki, H. Jelinková, and J. Šulc, “Thulium-doped vanadate crystals: growth, spectroscopy and laser performance,” Prog. Quantum Electron. 35, 109–157 (2011). [CrossRef]
  15. S. Ray, A. Banerjee, and P. Pramanik, “A novel rock-like nanoarchitecture of YVO4:Eu3+ phosphor: selective synthesis, characterization, and luminescence behavior,” J. Mater. Sci. 45, 259–267 (2010). [CrossRef]
  16. M. Yu, J. Lin, Z. Wang, J. Fu, S. Wang, H. Zhang, and Y. Han, “Fabrication, patterning, and optical properties of nanocrystalline YVO4:A (A=Eu3+, Dy3+, Sm3+, Er3+) phosphor films via sol–gel soft lithography,” Chem. Mater. 14, 2224–2231 (2002). [CrossRef]
  17. X. Meng, L. Zhu, H. Zhang, C. Wang, Y. Chow, and M. Lu, “Growth, morphology and laser performance of Nd:YVO4crystal,” J. Cryst. Growth 200, 199–203 (1999). [CrossRef]
  18. C. Görlier-Walrand and K. Binnemans, “Spectral intensities of f-f transitions,” in Handbook on the Physics and Chemistry of Rare Earths, , K. A. Gschneidner and J. L. Eyring, eds. (North-Holland, 1998), Vol. 25, Chap. 167, pp. 101–264.
  19. A. I. Zaguniennyi, V. G. Ostoumov, I. A. Shcherbakov, T. Jensen, J. P. Meyn, and G. Huber, “The Nd:GdVO4 crystal: a new material for diode-pumped lasers,” Sov. J. Quantum Electron. 22, 1071–1072 (1992). [CrossRef]
  20. P. J. Morris, W. Lulty, H. P. Weber, Y. D. Zavarstev, P. A. Studenikin, I. Shcherbakov, and A. I. Zagumenyi, “Laser operation and spectroscopy of Tm:Ho:GdVO4,” Opt. Commun. 111, 493–496 (1994). [CrossRef]
  21. F. Wang, X. J. Xue, and X. G. Liu, “Multicolor tuning of (Ln, P)-doped YVO4 nanoparticles by single-wavelength excitation,” Angew. Chem. Int. Ed. 47, 906–909 (2008). [CrossRef]
  22. J. H. Wu and B. Yan, “Photoluminescence intensity of YxGd1−xVO4:Eu3+ dependence on hydrothermal synthesis time and variable ratio of Y/Gd,” J. Alloys Compd. 455, 485–488 (2008). [CrossRef]
  23. W. M. Yen and M. J. Weber, Inorganic Phosphors: Compositions, Preparation and Optical Properties (CRC, 2004).
  24. V. K. Rai and S. B. Rai, “A comparative study of FIR and FL based temperature sensing schemes: an example of Pr3+,” Appl. Phys. B 87, 323–325 (2007). [CrossRef]
  25. V. K. Rai and C. B. de Araujo, “Limit of accuracy for fluorescence lifetime temperature sensing,” Spectrochim. Acta A 71, 116–118 (2008). [CrossRef]
  26. V. K. Rai, “Temperature sensors and optical sensors,” Appl. Phys. B 88, 297–303 (2007). [CrossRef]
  27. B. Liu, K. Han, X. Liu, M. Gu, S. Huang, C. Ni, Z. Qi, and G. Zhang, “Luminescent properties of GdTaO4 and GdTaO4:Eu3+ under VUV–UV excitation,” Solid State Commun. 144, 484–487 (2007). [CrossRef]
  28. T. Yamase, T. Kobayashi, M. Sugeta, and H. Naruke, “Europium(III) luminescence and intramolecular energy transfer studies of polyoxometalloeuropates,” J. Phys. Chem. A 101, 5046–5053 (1997). [CrossRef]
  29. C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millan, V. S. Amaral, F. Palacio, and L. D. Carlos, “A luminescent molecular thermometer for long-term absolute temperature measurements at the nanoscale,” Adv. Mater. 22, 4499–4504 (2010). [CrossRef]
  30. P. H. Gonzalez, S. F. L. Luis, S. G. Perez, and I. R. Martýn, “Analysis of Er3+ and Ho3+ codoped fluoroindate glasses as wide range temperature sensor,” Mater. Res. Bull. 46, 1051–1054 (2011). [CrossRef]
  31. Y. Shen, X. Wang, H. He, Y. Lin, and C. W. Nan, “Temperature sensing with fluorescence intensity ratio technique in epoxy-based nanocomposite filled with Er3+-doped 7YSZ,” Compos. Sci. Technol. 72, 1008–1011 (2012). [CrossRef]
  32. S. K. Singh, K. Kumar, and S. B. Rai, “Er3+/Yb3+ codoped nano-phosphor for optical thermometry,” Sens. Actuators A Phys. 149, 16–20 (2009). [CrossRef]
  33. B. Dong, T. Yang, and M. K. Lei, “Optical high temperature sensor based on green up-conversion emissions in Er3+ doped Al2O3,” Sens. Actuators B Chem. 123, 667–670 (2007). [CrossRef]
  34. C. Li, B. Dong, S. Li, and C. Song, “Er3+-Yb3+ codoped silicate glass for optical temperature sensor,” Chem. Phys. Lett. 443, 426–429 (2007). [CrossRef]
  35. Y. C. Li, Y. H. Chang, Y. F. Lin, Y. S. Chang, and Y. J. Lin, “Synthesis and luminescent properties of Ln3+ (Eu3+, Sm3+, Dy3+)-doped lanthanum aluminum germanate LaAlGe2O7 phosphors,” J. Alloys Compd. 439, 367–375 (2007). [CrossRef]
  36. S. R. Anishia, M. T. Jose, O. Annalakshmi, and V. Ramasamy, “Thermoluminescence properties of rare earth doped lithium magnesium borate phosphors,” J. Lumin. 131, 2492–2498 (2011). [CrossRef]
  37. V. K. Rai and C. B. Araujo, “Fluorescence intensity ratio technique for Sm3+ doped calibo glass,” Spectrochim. Acta A 69, 509–512 (2008). [CrossRef]
  38. L. P. Goss, A. A. Smith, and M. E. Post, “Surface thermometry by laser-induced fluorescence,” Rev. Sci. Instrum. 60, 3702–3706 (1989). [CrossRef]
  39. G. Särner, M. Richter, and M. Aldén, “Investigations of blue emitting phosphors for thermometry,” Meas. Sci. Technol. 19, 125304 (2008). [CrossRef]
  40. B. Di Bartolo and J. Collins, “Luminescence spectroscopy,” in Handbook of Applied Solid State Spectroscopy, D. R. Vij, ed. (Springer, 2006).
  41. L. A. Riseberg and H. W. Moos, “Multiphonon orbit-lattice relaxation of excited states of rare-earth ions in crystals,” Phys. Rev. 174, 429–438 (1968). [CrossRef]
  42. A. L. Heyes, “On the design of phosphors for high-temperature thermometry,” J. Lumin. 129, 2004–2009 (2009). [CrossRef]
  43. M. D. Chambers, P. A. Rousseve, and D. R. Clarke, “Decay pathway and high-temperature luminescence of Eu3+ in Ca2Gd8Si6O26,” J. Lumin. 129, 263–269 (2009). [CrossRef]
  44. M. Anitha, P. Ramakrishnan, A. Chatterjee, G. Alexander, and H. Singh, “Spectral properties and emission efficiencies of GdVO4 phosphors,” Appl. Phys. A 74, 153–162(2002). [CrossRef]
  45. A. H. Krumpel, E. van der Kolk, E. Cavalli, P. Boutinaud, M. Bettinelli, and P. Dorenbos, “Lanthanide 4f-level location in AVO4:Ln3+ (A=La, Gd, Lu) crystals,” J. Phys. Condens. Matter 21, 115503 (2009). [CrossRef]
  46. Z. Xu, B. Feng, Y. Gao, Q. Zhao, D. Sun, X. Gao, K. Li, F. Ding, and Y. Sun, “Uniform and well-dispersed GdVO4 hierarchical architectures: hydrothermal synthesis, morphology evolution, and luminescence properties,” CrystEngComm 14, 5530–5538 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited