OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 8 — Mar. 10, 2013
  • pp: 1731–1742

Holographic otoscope using dual-shot-acquisition for the study of eardrum biomechanical displacements

Jorge Mauricio Flores-Moreno, Fernando Mendoza Santoyo, and Julio Cesar Estrada Rico  »View Author Affiliations


Applied Optics, Vol. 52, Issue 8, pp. 1731-1742 (2013)
http://dx.doi.org/10.1364/AO.52.001731


View Full Text Article

Enhanced HTML    Acrobat PDF (1706 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Recently an optoelectronic holography system was deployed in the clinic with the purpose of quantifying the tympanic membrane (TM) displacements of various mammal species, the objective being the understanding of their middle ear biomechanics. The optoelectronic holography system has an in-line configuration where the data gathered is decoded using lensless digital holography with the Fresnel approximation. This paper presents quantitative data obtained from an acoustically excited postmortem chinchilla’s TM. To achieve this we used a robust customized windowed unwrapping method to unwrap the noisy optical phase obtained by subtracting phase maps of two recorded holograms and the results were compared with those obtained when using the unwrapping branch-cut algorithm. Additionally, phase maps obtained by the phase-stepping technique were compared applying both unwrapping methods. For in vivo applications particular emphasis is made on post-processing dual-shot-acquisition of holograms as one of various acquisition strategies and algorithms to diminish measurement error due to heartbeat, breathing, and patient’s head motion as well as environment induced mechanical disturbances present in a noncontrolled environment, such as in a clinic. By recording only two holograms representing a stationary and deformed state of eardrum, respectively, we can increase the acquisition speed of the camera used to record faster events happening on the TM surface.

© 2013 Optical Society of America

OCIS Codes
(090.1995) Holography : Digital holography
(100.5088) Image processing : Phase unwrapping

ToC Category:
Image Processing

History
Original Manuscript: November 20, 2012
Revised Manuscript: February 6, 2013
Manuscript Accepted: February 7, 2013
Published: March 8, 2013

Virtual Issues
Vol. 8, Iss. 4 Virtual Journal for Biomedical Optics

Citation
Jorge Mauricio Flores-Moreno, Fernando Mendoza Santoyo, and Julio Cesar Estrada Rico, "Holographic otoscope using dual-shot-acquisition for the study of eardrum biomechanical displacements," Appl. Opt. 52, 1731-1742 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-8-1731


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. M. Flores-Moreno, C. Furlong, J. J. Rosowski, E. Harrington, J. T. Cheng, C. Scarpino, and F. M. Santoyo, “Holographic otoscope for nano-displacement measurements of surfaces under dynamic excitation,” Scanning 33, 342–352 (2011). [CrossRef]
  2. J. J. Rosowski, J. T. Cheng, M. E. Ravicz, N. Hulli, M. d S. Hernandez-Montes, E. Harrington, and C. Furlong, “Computer-assisted time-averaged holograms of the motion of the surface on the mammalian tympanic membrane with sound stimuli of 0.4–25 kHz,” Hear. Res. 253, 83–96 (2009). [CrossRef]
  3. J. T. Cheng, A. A. Aarnisalo, E. Harrington, M. d S. Hernandez-Montes, C. Furlong, S. N. Merchant, and J. J. Rosowski, “Motion of the surface of the human tympanic membrane measured with stroboscopic holography,” Hear. Res. 263, 66–77 (2010). [CrossRef]
  4. J. E. Shanks, D. J. Lilly, R. H. Margolis, T. L. Wiley, and R. H. Wilson, “Tympanometry,” J. Speech Hear. Disrod. 53, 354–377 (1998).
  5. R. H. Margolis, G. L. Saly, and D. H. Keefe, “Wideband reflectance tympanometry in normal adults,” J. Acoust. Soc. Am. 106, 265–280 (1999). [CrossRef]
  6. D. H. Keefe, J. C. Bulen, K. H. Arehart, and E. M. Burns, “Ear-canal impedance and reflection coefficient in human infants and adults,” J. Acoust. Soc. Am. 94, 2617–2638 (1993). [CrossRef]
  7. M. P. Feeney, I. L. Grant, and L. P. Marryott, “Wideband energy reflectance in adults with middle-ear disorders,” J. Speech Lang. Hear. Res. 46, 901–911 (2003). [CrossRef]
  8. J. B. Allen, P. S. Jeng, and H. Levitt, “Evaluation of human middle ear function via an acoustic power assessment,” J. Rehabil. Res. Dev. 42, 63–78 (2005). [CrossRef]
  9. H. Wada, T. Kobayashi, M. Suetake, and H. Tachizaki, “Dynamic behavior of the middle ear base on sweep frequency tympanometry,” Audiology 28, 127–134 (1989). [CrossRef]
  10. J. J. Rosowski, H. H. Nakajima, and S. N. Mechant, “Clinical utility of laser-Doppler vibrometer in live normal and pathologic human ears,” Ear Hear. 29, 3–19 (2008). [CrossRef]
  11. K. R. Whittemore, S. N. Merchant, B. B. Poon, and J. J. Rosowski, “A normative study of tympanic membrane motion in humans using a laser Doppler vibrometer (LDV),” Hear. Res. 187, 85–104 (2004). [CrossRef]
  12. R. J. Pryputniewicz, J. S. Yokum, and C. Furlong, “Optoelectronic holography method for measurements of absolute inside shapes of objects,” Proc. SEM Int. Conf. on Measurements in Advanced Materials and Systems (SEM, 2002), pp. 270–273.
  13. S. M. Khanna and J. Tonndorf, “Tympanic membrane vibrations in cats, studied by time-averaged holography,” J. Acoust. Soc. Am. 51, 1904–1920 (1972). [CrossRef]
  14. J. Tonndorf and S. M. Khanna, “Tympanic-membrane vibrations in human cadaver ears studied by time-averaged holography,” J. Acoust. Soc. Am. 52, 1221–1233 (1972). [CrossRef]
  15. O. J. Løkberg, K. Hogmonen, and O. M. Holje, “Vibration measurement on the human eardrum in vivo,” Appl. Opt. 18, 763–765 (1979). [CrossRef]
  16. H. Wada, M. Ando, M. Takeuchi, H. Sugara, and T. Koike, “Vibration measurement of the tympanic membrane of guinea pig temporal bones using time-averaged speckle pattern,” J. Acoust. Soc. Am. 111, 2189–2199 (2002). [CrossRef]
  17. H. Ladak, W. Decreamer, and W. Funnell, “Response of the cat eardrum to static pressures mobile versus immobile malleus,” J. Acoust. Soc. Am. 116, 3008–3021 (2004). [CrossRef]
  18. M. Sudberg, M. Peebo, P. Å. Öberg, and P. G. Lundquist, “Diffuse reflectance spectroscopy of the human tympanic membrane in otitis media,” Physiol. Meas. 25, 1473–1483 (2004). [CrossRef]
  19. B. Kemper, D. Dirksen, W. Avenhaus, A. Merker, and G. Von Bally, “Endoscopic double-pulse electronic-speckle-pattern interferometer for technical and medical intracavity inspection,” Appl. Opt. 25, 4155–4161 (1986). [CrossRef]
  20. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268–1270 (1997). [CrossRef]
  21. I. T. Dobrev, E. Harrington, T. Cheng, C. Furlong, and J. J. Rosowski, “Digital holographic otoscope for measurements of the human tympanic membrane in-vivo,” presented at SEM XII, Costa Mesa Cal., US, 11–14 June2012.
  22. Th. Kreis, Handbook of Holographic Interferometry(Wiley-VCH, Verlag GmbH & Co. KGaA, 2005).
  23. T. Kreis and W. P. Juptner, “Suppression of the dc term in digital holography,” Opt. Eng. 36, 2357–2360 (1997). [CrossRef]
  24. C. P. McElhinney, J. B. McDonald, A. Castro, Y. Frauel, B. Javidi, and T. j. Naughton, “Depth-independent segmentation of macroscopic three-dimensional objects encoded in single perspectives of digital holograms,” Opt. Lett. 32, 1229–1231 (2007). [CrossRef]
  25. T. Latychevskaia and H. Fink, “Solution to the twin image problem in holography,” Phys. Rev. Lett. 98, 233901 (2007). [CrossRef]
  26. J. C. Estrada, M. Servin, and J. A. Quiroga, “Noise robust linear dynamic system for phase unwrapping and smoothing,” Opt. Express 19, 5126–5133 (2011). [CrossRef]
  27. M. A. Navarro, J. C. Estrada, M. Servin, J. A. Quiroga, and J. Vargas, “Fast two-dimensional simultaneous phase unwrapping and low-pass filtering,” Opt. Express 20, 2556–2560 (2012). [CrossRef]
  28. J. C. Estrada, J. Vargas, J. M. Flores-Moreno, and J. A. Quiroga, “Windowed phase unwrapping using a first order dynamic system following iso-phase contours,” App. Opt. 51, 7549–7553 (2012). [CrossRef]
  29. M. K. Kim, Digital Holographic Microscopy (Springer, 2011).
  30. W. Decraemer and W. Funnell, “Anatomical and mechanical properties of the tympanic membrane,” in Chronic Otitis Media. Pathogenesis-Oriented Therapeutic Management, B. Ars, ed. (Kugler, 2008), pp. 51–84.
  31. J. T. Cheng, C. Dai, and R. Z. Gan, “Viscoelastic properties of human tympanic membrane,” Ann. Biomed. Eng. 35, 305–314 (2007). [CrossRef]
  32. J. P. Fay, S. Puria, and C. R. Steele, “The discordant eardrum,” Proc. Natl. Acad. Sci. U.S.A. 103, 19743–19748 (2006). [CrossRef]
  33. K. N. O’Connor, M. Tam, N. H. Blevins, and S. Puria, “Tympanic membrane collagen fibers: a key to high-frequency sound conduction,” Laryngoscope 118, 483–490 (2008). [CrossRef]
  34. R. J. Pryputniewicz, “Holographic numerical analysis,” Worcester Polytechnic Institute, Department of Mechanical Engineering, Worcester, MA, 1999.
  35. C. Furlong and R. J. Pryputniewicz, “Non-destructive damage evaluation of composite structures by optoelectronic holography methodologies,” 2003 SEM Annual Conference on Experimental Mechanics, Charlotte, NC, 2–4 June2003.
  36. P. Hariharan and B. F. Oreb, “Stroboscopic holographic interferometry: application of digital techniques,” Opt. Commun. 59, 83–86 (1986). [CrossRef]
  37. J. W. Goodman, Introduction to Fourier optics3rd ed. (Roberts & Company, 2005).
  38. B. Strobel, “Processing of interferometric phase maps as complex-valued phasor images,” Appl. Opt. 35, 2192–2198 (1996). [CrossRef]
  39. R. Buckland, J. M. Huntley, and S. R. E. Turner, “Unwrapping noisy phase maps by use of minimum-cost-matching algorithm,” Appl. Opt. 34, 5100–5108 (1995). [CrossRef]
  40. M. Foracchia, E. Grisan, and A. Ruggeri, “Luminosity and contrast normalization in retinal images,” Med. Image Anal. 3, 179–190 (2005). [CrossRef]
  41. B. Nill and B. H. Bouzas, “Objective image quality measure derived from digital image power spectra,” Opt. Eng. 31, 813–825 (1992). [CrossRef]
  42. G. Cumming, F. Fidler, and D. L. Vaux, “Error bars in experimental biology,” J. Cell Biol. 177, 7–11 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited