OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 8 — Mar. 10, 2013
  • pp: 1743–1751

Analytical approximation for photonic array modes in one-dimensional photonic crystal devices

Elena Smith, Vladislav Shteeman, and Amos A. Hardy  »View Author Affiliations


Applied Optics, Vol. 52, Issue 8, pp. 1743-1751 (2013)
http://dx.doi.org/10.1364/AO.52.001743


View Full Text Article

Enhanced HTML    Acrobat PDF (712 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new analytical approximation for photonic array modes is presented. We consider the specific class of one-dimensional (1D) photonic crystals (encompassing large arrays of coupled identical planar waveguides, large arrays of identical phase-locked lasers, etc.), in which light propagates along the optical axis of the device. Approximate analytical expressions for the array modes (both spatial distribution and propagation constants) become available. This approach allows a fast, simple, and accurate analytical evaluation of the electromagnetic field in 1D photonic crystal devices.

© 2013 Optical Society of America

OCIS Codes
(140.3290) Lasers and laser optics : Laser arrays
(250.7360) Optoelectronics : Waveguide modulators
(160.5298) Materials : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: December 20, 2012
Revised Manuscript: January 19, 2013
Manuscript Accepted: January 19, 2013
Published: March 8, 2013

Citation
Elena Smith, Vladislav Shteeman, and Amos A. Hardy, "Analytical approximation for photonic array modes in one-dimensional photonic crystal devices," Appl. Opt. 52, 1743-1751 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-8-1743


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Joannopoulos, R. Meade, and J. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University, 1995).
  2. E. Yablonovitch, T. J. Gmitter, and R. Bhat, “Inhibited and enhanced spontaneous emission from optically thin AlGaAs/GaAs double heterostructures,” Phys. Rev. Lett. 61, 2546–2549 (1988). [CrossRef]
  3. S. Fan, S. G. Johnson, J. D. Joannopoulos, C. Manolatou, and H. A. Haus, “Waveguide branches in photonic crystals,” J. Opt. Soc. Am. B 18, 162–165 (2001). [CrossRef]
  4. J. B. Pendry, “Calculating photonic band structure,” J. Phys. Condens. Matter 8, 1085–1108 (1996). [CrossRef]
  5. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).
  6. S. Johnson and J. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a plane-wave basis,” Opt. Express 8, 173–190 (2001). [CrossRef]
  7. E. Lidorikis, M. M. Sigalas, and C. M. Soukoulis, “Tight-binding parameterization for photonic band gap materials,” Phys. Rev. Lett. 81, 1405–1408 (1998). [CrossRef]
  8. H. Kogelnik, Theory of dielectric waveguides in integrated optics (Springer-Verlag, 1975).
  9. A. A. Hardy, W. Streifer, and M. Osinski, “Coupled mode equations for multiwaveguide systems in isotropic or anisotropic media,” Opt. Lett. 11, 742–744 (1986). [CrossRef]
  10. A. A. Hardy and W. Streifer, “Coupled mode theory of parallel waveguides,” J. Lightwave Technol. 3, 1135–1146 (1985). [CrossRef]
  11. A. Snyder, “Coupled-mode theory for optical fibers,” J. Opt. Soc. Am. 62, 1267–1277 (1972). [CrossRef]
  12. A. A. Hardy and E. Kapon, “Coupled-mode formulations for parallel-laser resonators with application to vertical-cavity semiconductor-laser arrays,” IEEE J. Quantum Electron. 32, 966–971 (1996). [CrossRef]
  13. V. Shteeman, D. Boiko, E. Kapon, and A. A. Hardy, “Extension of coupled mode analysis to periodic large arrays of identical waveguides for photonic crystals applications,” IEEE J. Quantum Electron. 43, 215–224 (2007). [CrossRef]
  14. E. Smith, V. Shteeman, E. Kapon, and A. A. Hardy, “Fast approximate derivation of photonic supermodes in one-dimensional photonic crystal devices,” in IEEE 27th Convention of Electrical & Electronics Engineers in Israel (IEEEI) (IEEE, 2012).
  15. C. Kittel, Quantum Theory of Solids (Wiley, 1987).
  16. L. Coldren and S. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, 1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited