OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 9 — Mar. 20, 2013
  • pp: 1779–1792

Spatial-frequency-compression scheme for diffuse optical tomography with dense sampling dataset

Xiaoqing Zhou, Ying Fan, Qiang Hou, Huijuan Zhao, and Feng Gao  »View Author Affiliations


Applied Optics, Vol. 52, Issue 9, pp. 1779-1792 (2013)
http://dx.doi.org/10.1364/AO.52.001779


View Full Text Article

Enhanced HTML    Acrobat PDF (1938 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Dense sampling of illumination and detection offers an effective way of improving the image-reconstruction performance of near-infrared diffuse optical tomography (DOT) at a cost of lengthy computation times. In this paper, we describe a fast DOT scheme for reconstructing the absorption coefficient image of a slab medium from dense sampling of both illumination and detection in the noncontact DOT. The proposed method is carried out with spatial-frequency encoding in both the source and detection spaces, and involves a spatial-frequency-compression (SFC) strategy for selecting the useful spatial frequency based on the tissue transfer function. The method is expected to considerably reduce the calculation time for reconstruction while improving the quality of the reconstructed images. Results from the simulated data show that the speed for absorption reconstruction with the proposed SFC method is more than 400 times faster than that with the conventional one. A noncontact DOT system for dense sampling of both illumination and detection is developed by using laser raster scanning and CCD-based data acquisition. Experimental measurements on several solid phantoms demonstrate that a high quantitativeness ratio can be obtained from the proposed method thanks to reduction of the ill-posedness of the inverse calculation. It takes less than 20 s for the proposed method to experimentally reconstruct one absorption image from a 256×256-sized dataset, which would take a few hours with the conventional method.

© 2013 Optical Society of America

OCIS Codes
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(170.6920) Medical optics and biotechnology : Time-resolved imaging
(170.6960) Medical optics and biotechnology : Tomography

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: October 15, 2012
Revised Manuscript: January 13, 2013
Manuscript Accepted: February 8, 2013
Published: March 12, 2013

Virtual Issues
Vol. 8, Iss. 4 Virtual Journal for Biomedical Optics

Citation
Xiaoqing Zhou, Ying Fan, Qiang Hou, Huijuan Zhao, and Feng Gao, "Spatial-frequency-compression scheme for diffuse optical tomography with dense sampling dataset," Appl. Opt. 52, 1779-1792 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-9-1779

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited