OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 9 — Mar. 20, 2013
  • pp: 1954–1962

Long-period-grating in a trench assisted planar optical waveguide

Nandam Ashok, Vipul Rastogi, and Ajeet Kumar  »View Author Affiliations


Applied Optics, Vol. 52, Issue 9, pp. 1954-1962 (2013)
http://dx.doi.org/10.1364/AO.52.001954


View Full Text Article

Enhanced HTML    Acrobat PDF (1422 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present long-period-grating in a planar optical waveguide that contains a low-index trench in the cladding region. The effect of the trench on transmission spectrum of the grating has been studied. The waveguide structure has been analyzed by the transfer matrix method and the output spectrum of the grating has been calculated by the coupled mode theory. Our numerical results show that position, strength, and width of the trench significantly affect the transmission spectrum of the grating. In particular, we show the appearance of triple resonance between a set of coupled modes and obtain an ultrawide band rejection in the output spectrum. We numerically demonstrate applications of the proposed structure in wideband rejection filters, refractive index sensors, and gain equalization of erbium-doped waveguide amplifiers.

© 2013 Optical Society of America

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(130.3120) Integrated optics : Integrated optics devices
(230.7370) Optical devices : Waveguides
(350.2770) Other areas of optics : Gratings

ToC Category:
Integrated Optics

History
Original Manuscript: December 3, 2012
Revised Manuscript: February 12, 2013
Manuscript Accepted: February 13, 2013
Published: March 18, 2013

Citation
Nandam Ashok, Vipul Rastogi, and Ajeet Kumar, "Long-period-grating in a trench assisted planar optical waveguide," Appl. Opt. 52, 1954-1962 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-9-1954


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. M. Vengsarkar, J. R. Pedrazzani, J. B. Judkins, P. J. Lamaire, N. S. Bergano, and C. R. Davidson, “Long-period fiber-grating-based gain equalizers,” Opt. Lett. 21, 336–338 (1996). [CrossRef]
  2. P. F. Wysocki, J. B. Judkins, R. P. Espindola, M. Andrejco, and A. M. Vengsarkar, “Broad-band erbium-doped fiber amplifier flattened beyond 40 nm using long-period grating filter,” IEEE Photon. Technol. Lett. 9, 1343–1345 (1997). [CrossRef]
  3. A. M. Vengsarkar, P. J. Lamaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band rejection filters,” J. Lightwave Technol. 14, 58–65(1996). [CrossRef]
  4. D. M. Constantini, C. A. P. Muller, S. A. Vasiliev, H. G. Limberger, and R. P. Salathe, “Tunable loss filter based on metal coated long-period fiber grating,” IEEE Photon. Technol. Lett. 11, 1458–1560 (1999). [CrossRef]
  5. K. S. Chiang, Y. Liu, M. N. Ng, and S. Li, “Coupling between two parallel long period fiber gratings,” Electron. Lett. 36, 1408–1409 (2000). [CrossRef]
  6. D. B. Stegall and T. Erdogan, “Dispersion control with use of long-period fiber gratings,” J. Opt. Soc. Am. A 17, 304–312 (2000). [CrossRef]
  7. M. Das and K. Thyagarajan, “Dispersion compensation in transmission using uniform long period fiber gratings,” Opt. Commun. 190, 159–163 (2001). [CrossRef]
  8. Y. Han, C. S. Kim, U. C. Paek, and Y. Chung, “Performance enhancement of long period fiber gratings for strain and temperature sensing,” IEICE Trans. Electron. E83-C, 282–286 (2000).
  9. V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21, 692–694 (1996). [CrossRef]
  10. H. J. Patrick, A. D. Kersey, and F. Bucholtz, “Analysis of the response of long-period fiber gratings to the external index of refraction,” J. Lightwave Technol. 16, 1606–1612 (1998). [CrossRef]
  11. A. S. Kurkov, M. Douay, O. Duhem, B. Leleu, J. F. Heninot, J. F. Bayon, and L. Rivoallan, “Long-period fiber grating as a wavelength selective polarization element,” Electron. Lett. 33, 616–617 (1997). [CrossRef]
  12. V. Rastogi and K. S. Chiang, “Long-period gratings in planar optical waveguides,” Appl. Opt. 41, 6351–6355(2002). [CrossRef]
  13. K. S. Chiang, K. P. Lor, Q. Liu, C. K. Chow, Y. M. Chu, and H. P. Chan, “Long-period waveguide gratings,” Jpn. J. Appl. Phys. 43.8B, 5690–5696 (2004). [CrossRef]
  14. K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chan, V. Rastogi, and Y. M. Chu, “Widely tunable long-period gratings fabricated in polymer-clad ion-exchanged glass waveguides,” IEEE Photon. Technol. Lett. 15, 1094–1096 (2003). [CrossRef]
  15. K. P. Lor, Q. Liu, and K. S. Chiang, “UV-written long-period gratings on polymer waveguides,” IEEE Photon. Technol. Lett. 17, 594–596 (2005). [CrossRef]
  16. Y. M. Chu, K. S. Chiang, and Q. Liu, “Widely tunable optical bandpass filter by use of polymer long-period waveguide gratings,” Appl. Opt. 45, 2755–2760 (2006). [CrossRef]
  17. Y. Bai, Q. Liu, K. P. Lor, and K. S. Chiang, “Widely tunable long-period waveguide grating couplers,” Opt. Express 14, 12644–12654 (2006). [CrossRef]
  18. Y. Zhang, D.-L. Zhang, and E. Y.-B. Pun, “Analysis of temperature/pressure sensitivity of the resonant wavelength of long period channel waveguide gratings,” J. Opt. Soc. Am. A 25, 2776–2783 (2008). [CrossRef]
  19. M. R. Ramadas, E. Garmire, A. K. Ghatak, K. Thyagarajan, and M. R. Shenoy, “Analysis of absorbing and leaky planar waveguides: a novel method,” Opt. Lett. 14, 376–378 (1989). [CrossRef]
  20. M. R. Ramadas, R. K. Varshney, K. Thyagarajan, and A. K. Ghatak, “A matrix approach to study the propagation characteristics of a general nonlinear planar waveguide,” J. Lightwave Technol. 7, 1901–1905 (1989). [CrossRef]
  21. A. Yariv, Optical Electronics in Modern Communications(Oxford, 1997).
  22. H. J. Patrick, A. D. Kersey, and F. Bucholtz, “Analysis of the response of long period fiber gratings to external index of refraction,” J. Lightwave Technol. 16, 1606–1612 (1998). [CrossRef]
  23. J. L. Philipsen, C. L. Thomsen, L. Leick, Y. Shen, P. C. Nielsen, C. Laurent-Laud, M. G. Dyndgaard, and T. Feuchter, “Erbium-doped waveguide amplifier technology and components,” in Proceedings of European Conference on Optical Communication (IEEE, 2003), pp. 420–421.
  24. H. Chen, “Design and simulation of broad band IR integrated waveguide amplifiers with long period waveguide grating filter,” J. Infrared Millim. Terahz. Waves 31, 24–30 (2010). [CrossRef]
  25. H. Chen, D. Jizhi, and L. Yongzhi, “Thin film filter for broadband IR integrated waveguide amplifier,” Int. J. Infrared Millim. Waves 26, 297–305 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited