OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 9 — Mar. 20, 2013
  • pp: 1987–1991

Diode-end-pumped continuous wave single-longitudinal-mode Nd:GdVO4 laser at 1342 nm

Yaoting Wang, Wujun Li, Leilei Pan, Jintao Yu, and Ruihong Zhang  »View Author Affiliations


Applied Optics, Vol. 52, Issue 9, pp. 1987-1991 (2013)
http://dx.doi.org/10.1364/AO.52.001987


View Full Text Article

Enhanced HTML    Acrobat PDF (319 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A diode-end-pumped continuous wave (cw) single-longitudinal-mode Nd:GdVO4 laser at 1342 nm is reported. A ring laser resonator was designed and the mode-to-pump ratio was optimized to achieve higher output power. A maximum output power of 3.1 W cw single-longitudinal-mode laser at 1342 nm was obtained, and the measured stability of laser output power was better than ±1% in the given 2 h. The experimental results are in good agreement with the theoretical calculation considering the energy-transfer upconversion.

© 2013 Optical Society of America

OCIS Codes
(140.3530) Lasers and laser optics : Lasers, neodymium
(140.3560) Lasers and laser optics : Lasers, ring
(140.3580) Lasers and laser optics : Lasers, solid-state

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: November 5, 2012
Revised Manuscript: February 16, 2013
Manuscript Accepted: February 21, 2013
Published: March 20, 2013

Citation
Yaoting Wang, Wujun Li, Leilei Pan, Jintao Yu, and Ruihong Zhang, "Diode-end-pumped continuous wave single-longitudinal-mode Nd:GdVO4laser at 1342 nm," Appl. Opt. 52, 1987-1991 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-9-1987


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Jensen, V. G. Ostroumov, J. P. Meyn, G. Huber, A. I. Zagumennyi, and I. A. Shcherbakov, “Spectroscopic characterization and laser performance of diode-laser-pumped Nd:GdVO4,” Appl. Phys. B 58, 373–379 (1994). [CrossRef]
  2. C. Du, S. Ruan, H. Zhang, Y. Yu, F. Zeng, J. Wang, and M. Jiang, “A 13.3 W laser-diode-array end-pumped Nd:GdVO4 continuous-wave laser at 1.34 μm,” Appl. Phys. B 80, 45–48 (2005). [CrossRef]
  3. H. Zhang, J. Liu, J. Wang, C. Wang, L. Zhu, Z. Shao, X. Meng, X. Hu, and M. Jiang, “Characterization of the laser crystal Nd:GdVO4,” J. Opt. Soc. Am. B 19, 18–27 (2002). [CrossRef]
  4. H. Jiang, H. Zhang, J. Wang, H. Xia, X. Hu, B. Teng, and C. Zhang, “Optical and laser properties of Nd:GdVO4 crystal,” Opt. Commun. 198, 447–452 (2001). [CrossRef]
  5. L. Qin, X. Meng, J. Zhang, C. Du, L. Zhu, and B. Xu, “Growth and properties of Nd:GdVO4 crystal,” Opt. Mater. 23, 455–459 (2003). [CrossRef]
  6. A. Agnesi, A. Guandalini, and G. Reali, “High-brightness 2.4 W continuous-wave Nd:GdVO4 laser at 670 nm,” Opt. Lett. 29, 56–59 (2004). [CrossRef]
  7. R. Zhou, R. S. Chen, D. C. Lin, and Y. J. Quan, “High power continuous-wave diode-end-pumped 1.34 mm laser,” Chin. Phys. Lett. 25, 4273–4275 (2008). [CrossRef]
  8. J. W. Kim, J. I. Mackenzie, and W. A. Clarkson, “Influence of energy-transfer upconversion on threshold pump power in quasi-three-level solid state lasers,” Opt. Express 17, 11935–11943 (2009). [CrossRef]
  9. X. D. Li, X. Yu, F. Chen, R. P. Yan, J. Gao, J. H. Yu, and D. Y. Chen, “The Influence of energy transfer upconversion on thermal loading in end_pumped Nd:GdVO4 Laser,” Laser Phys. 19, 1969–1973 (2009). [CrossRef]
  10. X. D. Li, X. Yu, J. Gao, F. Chen, J. H. Yu, and D. Y. Chen, “Upconversion spectra of Nd:GdVO4 crystal under cw 808 nm diode-laser pumping,” Laser Phys. Lett. 6, 125–128 (2009). [CrossRef]
  11. C. Jacinto, D. N. Messias, A. A. Andrade, and T. Catunda, “Energy transfer upconversion determination by thermal-lens and Z-scan techniques in Nd3+-doped laser materials,” J. Opt. Soc. Am. B 26, 1002–1007 (2009). [CrossRef]
  12. Y. F. Chen, “Pump-to-mode size ratio dependence of thermal loading in diode-end-pumped solid-state lasers,” J. Opt. Soc. Am. B 17, 1835–1840 (2000). [CrossRef]
  13. V. Ostroumov, T. Jensen, J.-P. Meyn, and G. Huber, “Study of luminescence concentration quenching and energy transfer upconversion in Nd-doped LaSc3(BO3)4 and GdVO4 laser crystals,” J. Opt. Soc. Am. B 15, 1052–1060 (1998). [CrossRef]
  14. Y. F. Chen, Y. P. Lan, and S. C. Wang, “Influence of energy-transfer upconversion on the performance of high-power diode-end-pumped cw lasers,” IEEE J. Quantum Electron. 36, 615–619 (2000). [CrossRef]
  15. Y. Guyot, H. Manaa, J. Y. Rivorie, and R. Moncorge, “Excited-state-absorption and upconversion studies of Nd-doped single crystals Y3Al5O12, YLiF4, and LaMg Al11O9,” Phys. Rev. B 51, 784–799 (1995).
  16. M. Pollnau, P. J. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, “Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG,” Phys. Rev. B 58, 16076–16092 (1998).
  17. S. Bjurshagen, D. Evekull, and R. Koch, “Efficient generation of blue light by frequency doubling of a Nd:YAG laser operating on F3/24→I9/24 transitions,” Appl. Phys. B 76, 135–141 (2003). [CrossRef]
  18. S. Bjurshagen and R. Koch, “Modeling of energy-transfer upconversion and thermal effects in end-pumped quasi-three-level lasers,” Appl. Opt. 43, 4753–4767 (2004). [CrossRef]
  19. Y. T. Wang, J. L. Liu, Q. Liu, Y. J. Li, and K. S. Zhang, “Diode-end-pumped continuous-wave Nd:YAG laser at 946 nm of single-frequency operation,” Laser Phys. 20, 802–805 (2010). [CrossRef]
  20. Y. T. Wang, J. L. Liu, Q. Liu, Y. J. Li, and K. S. Zhang, “Stable continuous-wave single-frequency Nd:YAG blue laser at 473 nm considering the influence of the energy-transfer upconversion,” Opt. Express 18, 12044–12051 (2010). [CrossRef]
  21. Y. T. Wang and R. H. Zhang, “Optimizing the mode-to-pump ratio in end-pumped quasi-three-level Nd-doped lasers considering the energy-transfer upconversion,” J. Phys. B 44, 135401 (2011).
  22. Y. Wang, W. Li, L. Pan, J. Yu, and R. Zhang, “Optimizing mode-to-pump ratio in end-pumped Nd:GdVO4 laser at 1342 nm considering the energy-transfer upconversion,” Laser Phys. 22, 1655–1658 (2012). [CrossRef]
  23. F. Song, C. Zhang, X. Ding, Ji. Xu, and G. Zhang, “Determination of thermal focal length and pumping radius in gain medium in diode-end-pumped Nd:YVO4 lasers,” Appl. Phys. Lett. 81, 2145–2147 (2002). [CrossRef]
  24. R. Zhou, E. Li, H. Li, P. Wang, and J. Yao, “Continuous-wave, 15.2 W diode-end-pumped Nd:YAG laser operating at 946 nm,” Opt. Lett. 31, 1869–1871 (2006). [CrossRef]
  25. P. Laporta and M. Brussard, “Design criteria for mode size optimization in diode-pumped solid-state lasers,” IEEE J. Quantum Electron. 27, 2319–2326 (1991). [CrossRef]
  26. Y. F. Chen, C. F. Kao, and S. C. Wang, “Analytical model for the design of fiber-coupled laser-diode end-pumped lasers,” Opt. Commun. 133, 517–524 (1997). [CrossRef]
  27. Y. F. Chen, T. M. Huang, C. F. Kao, C. L. Wang, and S. C. Wang, “Optimization in scaling fiber-coupled laser-diode end-pumped laser to higher power: influence of thermal effect,” IEEE J. Quantum Electron. 33, 1424–1429 (1997). [CrossRef]
  28. X. Y. Peng, L. Xu, and A. Asundi, “Power scaling of diode-pumped Nd:YVO4 lasers,” IEEE J. Quantum Electron. 38, 1291–1299 (2002). [CrossRef]
  29. J. Zheng, S. Zhao, Q. Wang, X. Zhang, and L. Chen, “Influence of thermal effect in gain-media on optimum design of LD-end-pumped solid state laser,” Acta Photon. Sin. 30, 724–729 (2001).
  30. M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56, 1831–1833 (1990). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited