OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 1 — Jan. 1, 2014
  • pp: 27–31

Generation of bidirectional stretched pulses in a nanotube-mode-locked fiber laser

Xiankun Yao  »View Author Affiliations

Applied Optics, Vol. 53, Issue 1, pp. 27-31 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (548 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The bidirectional stretched pulses in a nanotube-based erbium-doped fiber laser are observed experimentally for the first time to our best knowledge. The proposed fiber laser generates two stable pulse trains in opposite directions with different central wavelengths, pulse widths, and repetition rates. In addition, the bidirectional operations with the same central wavelengths are also demonstrated by changing the polarization controller and pump power. Experimental results suggest that the cavity asymmetries together with the fiber birefringence play key roles in the formation of these unique features.

© 2013 Optical Society of America

OCIS Codes
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(140.3600) Lasers and laser optics : Lasers, tunable
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:
Lasers and Laser Optics

Original Manuscript: September 27, 2013
Revised Manuscript: November 22, 2013
Manuscript Accepted: November 22, 2013
Published: December 23, 2013

Xiankun Yao, "Generation of bidirectional stretched pulses in a nanotube-mode-locked fiber laser," Appl. Opt. 53, 27-31 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. A. Haus and W. S. Wong, “Solitons in optical communications,” Rev. Mod. Phys. 68, 423–444 (1996). [CrossRef]
  2. X. Liu, “Interaction and motion of solitons in passively-mode-locked fiber lasers,” Phys. Rev. A 84, 053828 (2011). [CrossRef]
  3. Z. C. Luo, A. P. Luo, W. C. Xu, C. X. Song, Y. X. Gao, and W. C. Chen, “Sideband controllable soliton all-fiber ring laser passively mode-locked by nonlinear polarization rotation,” Laser Phys. Lett. 6, 582–585 (2009). [CrossRef]
  4. L. R. Wang, X. M. Liu, and Y. K. Gong, “Giant-chirp oscillator for ultra-large net-normal-dispersion fiber lasers,” Laser Phys. Lett. 7, 63–67 (2010). [CrossRef]
  5. X. M. Liu, “Pulse evolution without wave breaking in a strongly dissipative-dispersive laser system,” Phys. Rev. A 81, 053819 (2010). [CrossRef]
  6. X. Liu, D. Han, Z. Sun, C. Zeng, H. Lu, D. Mao, Y. Cui, and F. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep. 3, 2718 (2013). [CrossRef]
  7. U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424, 831–838 (2003). [CrossRef]
  8. X. Liu, X. Yang, F. Lu, J. Ng, X. Zhou, and C. Lu, “Stable and uniform dual-wavelength erbium-doped fiber laser based on fiber Bragg gratings and photonic crystal fiber,” Opt. Express 13, 142–147 (2005). [CrossRef]
  9. D. Mao, X. M. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep. 3, 3223 (2013). [CrossRef]
  10. X. M. Liu, “A novel dual-wavelength DFB fiber laser based on symmetrical FBG structure,” IEEE Photon. Technol. Lett. 19, 632–634 (2007). [CrossRef]
  11. D. Y. Tang and L. M. Zhao, “Generation of 47  fs pulses directly from an erbium-doped fiber laser,” Opt. Lett. 32, 41–43 (2007). [CrossRef]
  12. S. Kobtsev, S. Kukarin, S. Smirnov, S. Turitsyn, and A. Latkin, “Generation of double-scale femto/pico-second optical lumps in mode-locked fiber lasers,” Opt. Express 17, 20707–20713 (2009). [CrossRef]
  13. X. M. Liu, “Dissipative soliton evolution in ultra-large normal-cavity-dispersion fiber lasers,” Opt. Express 17, 9549–9557 (2009). [CrossRef]
  14. S. Smirnov, S. Kobtsev, S. Kukarin, and A. Ivanenko, “Three key regimes of single pulse generation per round trip of all-normal-dispersion fiber lasers mode-locked with nonlinear polarization rotation,” Opt. Express 20, 27447–27453 (2012). [CrossRef]
  15. L. Yun, X. Liu, and D. Mao, “Observation of dual-wavelength dissipative solitons in a figure-eight erbium-doped fiber laser,” Opt. Express 20, 20992–20997 (2012). [CrossRef]
  16. D. Mao, X. Liu, and H. Lu, “Observation of pulse trapping in a near-zero dispersion regime,” Opt. Lett. 37, 2619–2621 (2012). [CrossRef]
  17. N. N. Akhmediev, J. M. Soto-Crespo, S. T. Cundiff, B. C. Collings, and W. H. Knox, “Phase locking and periodic evolution of solitons in passively mode-locked fiber lasers with a semiconductor saturable absorber,” Opt. Lett. 23, 852–854 (1998). [CrossRef]
  18. C. Zeng, X. Liu, and L. Yun, “Bidirectional fiber soliton laser mode-locked by single-wall carbon nanotubes,” Opt. Express 21, 18937–18942 (2013). [CrossRef]
  19. D. J. Styers-Barnett, S. P. Ellison, C. Park, K. E. Wise, and J. M. Papanikolas, “Ultrafast dynamics of single-walled carbon nanotubes dispersed in polymer films,” J. Phys. Chem. A 109, 289–292 (2005). [CrossRef]
  20. F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3, 738–742 (2008). [CrossRef]
  21. Y. F. Song, L. Li, H. Zhang, D. Y. Shen, D. Y. Tang, and K. P. Loh, “Vector multi-soliton operation and interaction in a graphene mode-locked fiber laser,” Opt. Express 21, 10010–10018 (2013). [CrossRef]
  22. X. He, Z. Liu, and D. Wang, “Wavelength-tunable, passively mode-locked fiber laser based on graphene and chirped fiber Bragg grating,” Opt. Lett. 37, 2394–2396 (2012). [CrossRef]
  23. Y. Cui and X. Liu, “Graphene and nanotube mode-locked fiber laser emitting dissipative and conventional solitons,” Opt. Express 21, 18969–18974 (2013). [CrossRef]
  24. X. M. Liu, “Dynamic evolution of temporal dissipative-soliton molecules in large normal path-averaged dispersion fiber lasers,” Phys. Rev. A 82, 063834 (2010). [CrossRef]
  25. N. Akhmediev, J. M. Soto-Crespo, and P. Grelu, “Roadmap to ultra-short record high-energy pulses out of laser oscillators,” Phys. Lett. A 372, 3124–3128 (2008). [CrossRef]
  26. L. Duan, X. Liu, D. Mao, L. Wang, and G. Wang, “Experimental observation of dissipative soliton resonance in an anomalous-dispersion fiber laser,” Opt. Express 20, 265–270 (2012). [CrossRef]
  27. X. Liu, “Mechanism of high-energy pulse generation without wave breaking in mode-locked fiber lasers,” Phys. Rev. A 82, 053808 (2010). [CrossRef]
  28. D. Anderson, M. Desaix, M. Karlsson, M. Lisak, and M. L. Quiroga-Teixeiro, “Wave-breaking-free pulses in nonlinear-optical fibers,” J. Opt. Soc. Am. B 10, 1185–1190 (1993). [CrossRef]
  29. L. Yun and X. Liu, “Generation and propagation of bound-state pulses in a passively mode-locked figure-eight laser,” IEEE Photon. J. 4, 512–519 (2012).
  30. D. Mao, X. Liu, D. Han, and H. Lu, “Compact all-fiber laser delivering conventional and dissipative solitons,” Opt. Lett. 38, 3190–3193 (2013). [CrossRef]
  31. A. G. Rozhin, Y. Sakakibara, S. Namiki, M. Tokumoto, and H. Kataura, “Sub-200-fs pulsed erbium-doped fiber laser using a carbon nanotube-polyvinylalcohol mode locker,” Appl. Phys. Lett. 88, 051118 (2006). [CrossRef]
  32. D. Mao, X. M. Liu, L. R. Wang, X. H. Hu, and H. Lu, “Partially polarized wave-breaking-free dissipative soliton with super-broad spectrum in a mode-locked fiber laser,” Laser Phys. Lett. 8, 134–138 (2011). [CrossRef]
  33. L. Wang, X. Liu, Y. Gong, D. Mao, and L. Duan, “Observations of four types of pulses in a fiber laser with large net-normal dispersion,” Opt. Express 19, 7616–7624 (2011). [CrossRef]
  34. X. Li, X. Liu, X. Hu, L. Wang, H. Lu, Y. Wang, and W. Zhao, “Long-cavity passively mode-locked fiber ring laser with high-energy rectangular-shape pulses in anomalous dispersion regime,” Opt. Lett. 35, 3249–3251 (2010). [CrossRef]
  35. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).
  36. X. Liu, “Soliton formation and evolution in passively-mode-locked lasers with ultralong anomalous-dispersion fibers,” Phys. Rev. A 84, 023835 (2011). [CrossRef]
  37. D. Han and X. Liu, “Sideband-controllable mode-locking fiber laser based on chirped fiber Bragg gratings,” Opt. Express 20, 27045–27050 (2012). [CrossRef]
  38. K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, “77  fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,” Opt. Lett. 18, 1080–1082 (1993). [CrossRef]
  39. H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment,” IEEE J. Quantum Electron. 31, 591–598 (1995). [CrossRef]
  40. Y. Chen, F. X. Kärtner, U. Morgner, S. H. Cho, H. A. Haus, E. P. Ippen, and J. G. Fujimoto, “Dispersion-managed mode locking,” J. Opt. Soc. Am. B 16, 1999–2004 (1999). [CrossRef]
  41. L. R. Wang, X. M. Liu, Y. K. Gong, D. Mao, and H. Feng, “Ultra-broadband high-energy pulse generation and evolution in a compact erbium-doped all-fiber laser,” Laser Phys. Lett. 8, 376–381 (2011). [CrossRef]
  42. F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92, 213902 (2004). [CrossRef]
  43. X. Liu, “Hysteresis phenomena and multipulse formation of a dissipative system in a passively mode-locked fiber laser,” Phys. Rev. A 81, 023811 (2010). [CrossRef]
  44. M. Olivier, V. Roy, M. Piché, and F. Babin, “Pulse collisions in the stretched-pulse fiber laser,” Opt. Lett. 29, 1461–1463 (2004). [CrossRef]
  45. C. Ouyang, P. Shum, K. Wu, J. H. Wong, H. Q. Lam, and S. Aditya, “Bidirectional passively mode-locked soliton fiber laser with a four-port circulator,” Opt. Lett. 36, 2089–2091 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited