OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 1 — Jan. 1, 2014
  • pp: 38–43

Plasmonic spectral splitting in multi-resonator-coupled waveguide systems

Chao Zeng  »View Author Affiliations

Applied Optics, Vol. 53, Issue 1, pp. 38-43 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (487 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Spectral splitting is numerically investigated in a metal-insulator-metal plasmonic waveguide coupled with a series of disk cavities for the first time to our best knowledge. The finite-difference time-domain simulations find that, when an identical cavity is introduced into the single-cavity-coupled structure, a resonance peak emerges in reflection dip due to the plasmonic analogue of electromagnetically induced transparency. By cascading multiple cavities into the waveguide system, the resonance spectra are gradually split because of the phase-coupled effects. Particularly, the quality factors of splitting resonance spectra can be rapidly improved with increasing the number of coupled cavities. The proposed plasmonic systems may find potential applications in highly integrated optical circuits, especially for multichannel filtering, all-optical switching, and slow-light devices.

© 2013 Optical Society of America

OCIS Codes
(060.4230) Fiber optics and optical communications : Multiplexing
(130.3120) Integrated optics : Integrated optics devices
(240.6680) Optics at surfaces : Surface plasmons
(230.4555) Optical devices : Coupled resonators

ToC Category:
Optical Devices

Original Manuscript: October 8, 2013
Manuscript Accepted: November 15, 2013
Published: December 23, 2013

Chao Zeng, "Plasmonic spectral splitting in multi-resonator-coupled waveguide systems," Appl. Opt. 53, 38-43 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003). [CrossRef]
  2. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006). [CrossRef]
  3. Q. Gan, Y. Gao, K. Wagner, D. Vezenov, Y. J. Ding, and F. J. Bartoli, “Experimental verification of the rainbow trapping effect in adiabatic plasmonic gratings,” Proc. Natl. Acad. Sci. USA 108, 5169–5173 (2011). [CrossRef]
  4. H. Lu, X. M. Liu, D. Mao, and G. X. Wang, “Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators,” Opt. Lett. 37, 3780–3782 (2012). [CrossRef]
  5. R. Zhou, H. Lu, X. Liu, Y. Gong, and D. Mao, “Second-harmonic generation from a periodic array of noncentrosymmetric nanoholes,” J. Opt. Soc. Am. B 27, 2405–2409 (2010). [CrossRef]
  6. H. Lu, X. Liu, R. Zhou, Y. Gong, and D. Mao, “Second-harmonic generation from metal-film nanohole arrays,” Appl. Opt. 49, 2347–2351 (2010). [CrossRef]
  7. J. Park, K. Y. Kim, I. M. Lee, H. Na, S. Y. Lee, and B. Lee, “Trapping light in plasmonic waveguides,” Opt. Express 18, 598–623 (2010). [CrossRef]
  8. H. Lu, X. M. Liu, Y. K. Gong, D. Mao, and L. R. Wang, “Optical bistability in metal-insulator-metal plasmonic Bragg waveguides with Kerr nonlinear defects,” Appl. Opt. 50, 1307–1311 (2011). [CrossRef]
  9. G. Wang, H. Lu, and X. Liu, “Trapping of surface plasmon waves in graded grating waveguide system,” Appl. Phys. Lett. 101, 013111 (2012). [CrossRef]
  10. G. Wang, H. Lu, and X. Liu, “Gain-assisted trapping of light in tapered plasmonic waveguide,” Opt. Lett. 38, 558–560 (2013). [CrossRef]
  11. N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9, 1663–1667 (2009). [CrossRef]
  12. J. Chen, Z. Li, S. Yue, J. Xiao, and Q. Gong, “Plasmon-induced transparency in asymmetric T-shape single slit,” Nano Lett. 12, 2494–2498 (2012). [CrossRef]
  13. Y. K. Gong, L. R. Wang, X. H. Hu, X. H. Li, and X. M. Liu, “Broad-bandgap and low-sidelobe surface plasmon polariton reflector with Bragg-grating-based MIM waveguide,” Opt. Express 17, 13727–13736 (2009). [CrossRef]
  14. B. Wang and G. P. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87, 013107 (2005). [CrossRef]
  15. F. F. Hu, H. X. Yi, and Z. P. Zhou, “Wavelength demultiplexing structure based on arrayed plasmonic slot cavities,” Opt. Lett. 36, 1500–1502 (2011). [CrossRef]
  16. H. Lu, X. Liu, Y. Gong, D. Mao, and L. Wang, “Enhancement of transmission efficiency of nanoplasmonic wavelength demultiplexer based on channel drop filters and reflection nanocavities,” Opt. Express 19, 12885–12890 (2011). [CrossRef]
  17. G. X. Wang, H. Lu, X. M. Liu, D. Mao, and L. N. Duan, “Tunable multi-channel wavelength demultiplexer based on MIM plasmonic nanodisk resonators at telecommunication regime,” Opt. Express 19, 3513–3518 (2011). [CrossRef]
  18. H. Lu, X. Liu, L. Wang, D. Mao, and Y. Gong, “Nanoplasmonic triple-wavelength demultiplexers in two-dimensional metallic waveguides,” Appl. Phys. B 103, 877–881 (2011). [CrossRef]
  19. Z. H. Han, E. Forsberg, and S. L. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19, 91–93 (2007). [CrossRef]
  20. Y. Gong, X. Liu, H. Lu, L. Wang, and G. Wang, “Perfect absorber supported by optical Tamm states in plasmonic waveguide,” Opt. Express 19, 18393–18398 (2011). [CrossRef]
  21. G. Veronis and S. Fan, “Theoretical investigation of compact couplers between dielectric slab waveguides and two-dimensional metal-dielectric-metal plasmonic waveguides,” Opt. Express 15, 1211–1221 (2007). [CrossRef]
  22. H. Lu, X. Liu, G. Wang, and D. Mao, “Tunable high-channel-count bandpass plasmonic filters based on an analogue of electromagnetically induced transparency,” Nanotechnology 23, 444003 (2012). [CrossRef]
  23. Y. K. Gong, X. M. Liu, and L. R. Wang, “High channel-count plasmonic filter with the metal-insulator-metal Fibonacci-sequence gratings,” Opt. Lett. 35, 285–287 (2010). [CrossRef]
  24. X. S. Lin and X. G. Huang, “Tooth-shaped plasmonic waveguide filters with nanometeric sizes,” Opt. Lett. 33, 2874–2876 (2008). [CrossRef]
  25. H. Lu, X. M. Liu, D. Mao, L. R. Wang, and Y. K. Gong, “Tunable band-pass plasmonic waveguide filters with nanodisk resonators,” Opt. Express 18, 17922–17927 (2010). [CrossRef]
  26. H. Lu, X. Liu, Y. Gong, L. Wang, and D. Mao, “Multi-channel plasmonic waveguide filters with disk-shaped nanocavities,” Opt. Commun. 284, 2613–2616 (2011). [CrossRef]
  27. Y. K. Gong, Z. Y. Li, J. X. Fu, Y. H. Chen, G. X. Wang, H. Lu, L. R. Wang, and X. M. Liu, “Highly flexible all-optical metamaterial absorption switching assisted by Kerr-nonlinear effect,” Opt. Express 19, 10193–10198 (2011). [CrossRef]
  28. G. Wang, H. Lu, X. Liu, and Y. Gong, “Numerical investigation of an all-optical switch in a graded nonlinear plasmonic grating,” Nanotechnology 23, 444009 (2012). [CrossRef]
  29. G. Wang, H. Lu, X. Liu, Y. Gong, and L. Wang, “Optical bistability in metal-insulator-metal plasmonic waveguide with nanodisk resonator containing Kerr nonlinear medium,” Appl. Opt. 50, 5287–5290 (2011). [CrossRef]
  30. H. Lu, X. Liu, L. Wang, Y. Gong, and D. Mao, “Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator,” Opt. Express 19, 2910–2915 (2011). [CrossRef]
  31. W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Plasmonic lens made of multiple concentric metallic rings under radially polarized illumination,” Nano Lett. 9, 4320–4325 (2009). [CrossRef]
  32. K. J. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991). [CrossRef]
  33. Y. Huang, C. Min, and G. Veronis, “Subwavelength slow-light waveguide based on a plasmonic analogue of electromagnetically induced transparency,” Appl. Phys. Lett. 99, 143117 (2011). [CrossRef]
  34. G. Wang, H. Lu, and X. Liu, “Dispersionless slow light in MIM waveguide based on a plasmonic analogue of electromagnetically induced transparency,” Opt. Express 20, 20902–20907 (2012). [CrossRef]
  35. N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010). [CrossRef]
  36. H. Lu, X. Liu, and D. Mao, “Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems,” Phys. Rev. A 85, 053803 (2012). [CrossRef]
  37. H. Lu, G. Wang, and X. Liu, “Manipulation of light in MIM plasmonic waveguide systems,” Chinese Sci. Bull. 58, 3607–3616 (2013). [CrossRef]
  38. Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006). [CrossRef]
  39. H. Lu, X. Liu, D. Mao, Y. Gong, and G. Wang, “Induced transparency in nanoscale plasmonic resonator systems,” Opt. Lett. 36, 3233–3235 (2011). [CrossRef]
  40. H. Lu and X. M. Liu, “Optical bistability in subwavelength compound metallic grating,” Opt. Express 21, 13794–13799 (2013). [CrossRef]
  41. J. Chen, C. Wang, R. Zhang, and J. Xiao, “Multiple plasmon-induced transparencies in coupled-resonator systems,” Opt. Lett. 37, 5133–5135 (2012). [CrossRef]
  42. H. L. Liu, B. Li, L. J. Zheng, C. Xu, G. B. Zhang, X. J. Wu, and N. Xiang, “Multispectral plasmon-induced transparency in triangle and nanorod(s) hybrid nanostructures,” Opt. Lett. 38, 977–979 (2013). [CrossRef]
  43. H. Lu, X. Liu, D. Mao, Y. Gong, and G. Wang, “Analysis of nanoplasmonic wavelength demultiplexing based on MIM waveguides,” J. Opt. Soc. Am. B 28, 1616–1621 (2011). [CrossRef]
  44. R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon induced transparency,” Phys. Rev. Lett. 104, 243902 (2010). [CrossRef]
  45. A. Artar, A. Yanik, and H. Altug, “Multispectral plasmon induced transparency in coupled meta-atoms,” Nano Lett. 11, 1685–1689 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (1087 KB)     
» Media 2: MOV (1259 KB)     
» Media 3: MOV (1799 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited