OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 10 — Apr. 1, 2014
  • pp: 2158–2162

Loop-locked coherent population trapping magnetometer based on a fiber electro-optic modulator

Yong Hu, Y. Y. Feng, Chi Xu, H. B. Xue, and Li Sun  »View Author Affiliations

Applied Optics, Vol. 53, Issue 10, pp. 2158-2162 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (413 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have set up a coherent population trapping (CPT)-based magnetometer prototype with the D1 line of Rb87 atoms. The dichromatic light field is derived from a fiber electro-optic modulator (FEOM) connected to an external cavity laser diode. A CPT resonance signal with a 516 Hz linewidth is observed. By feeding back the derivative of the resonance curve to the FEOM with a proportional integral controller, of which the voltage output is directly converted to the measured magnetic field intensity, the resonance peak is locked to the environmental magnetic field. The measurement data we have achieved are well matched with the data measured by a commercial fluxgate magnetometer within 2 nT, and the sensitivity is better than 8pT/Hz in a parallel B field.

© 2014 Optical Society of America

OCIS Codes
(020.0020) Atomic and molecular physics : Atomic and molecular physics
(020.1670) Atomic and molecular physics : Coherent optical effects
(040.0040) Detectors : Detectors
(120.4640) Instrumentation, measurement, and metrology : Optical instruments
(230.2090) Optical devices : Electro-optical devices

ToC Category:
Atomic and Molecular Physics

Original Manuscript: December 18, 2013
Revised Manuscript: February 24, 2014
Manuscript Accepted: February 26, 2014
Published: March 28, 2014

Yong Hu, Y. Y. Feng, Chi Xu, H. B. Xue, and Li Sun, "Loop-locked coherent population trapping magnetometer based on a fiber electro-optic modulator," Appl. Opt. 53, 2158-2162 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. K. Thienel, R. R. Harman, I. Y. Bar-Itzhack, and M. Lambertson, “Results of the magnetometer navigation (MAGNAV) inflight experiment,” in AIAA/AAS Astrodynamics Specialist Conference and Exhibit, August, 2004, pp. 16–19.
  2. C. Foley, K. Leslie, R. Binks, C. Lewis, W. Murray, G. Sloggett, S. Lam, B. Sankrithyan, N. Savvides, and A. Katzaros, “Field trials using HTS SQUID magnetometers for ground-based and airborne geophysical applications,” IEEE Trans. Appl. Supercond. 9, 3786–3792 (1999). [CrossRef]
  3. B. D. Cullity and C. D. Graham, Introduction to Magnetic Materials (Wiley, 2011).
  4. T. R. Clem, D. J. Overway, J. W. Purpura, J. T. Bono, R. H. Koch, J. R. Rozen, G. A. Keefe, S. Willen, and R. A. Mohling, “High-Tc SQUID gradiometer for mobile magnetic anomaly detection,” IEEE Trans. Appl. Supercond. 11, 871–875 (2001). [CrossRef]
  5. S. Bonnet and R. Héliot, “A magnetometer-based approach for studying human movements,” IEEE Trans. Biomed. Eng. 54, 1353–1355 (2007). [CrossRef]
  6. T. Sander, J. Preusser, R. Mhaskar, J. Kitching, L. Trahms, and S. Knappe, “Magnetoencephalography with a chip-scale atomic magnetometer,” Biomed. Opt. Express 3, 981–990 (2012). [CrossRef]
  7. D. Yu, S. Ruangchaithaweesuk, L. Yao, and S. Xu, “Detecting molecules and cells labeled with magnetic particles using an atomic magnetometer,” J. Nanopart. Res. 14, 1–9 (2012).
  8. J. Lenz and S. Edelstein, “Magnetic sensors and their applications,” IEEE Sens. J. 6, 631–649 (2006). [CrossRef]
  9. D. Budker and D. F. J. Kimball, Optical Magnetometry (Cambridge University, 2013).
  10. G. Alzetta, A. Gozzini, L. Moi, and G. Orriols, “An experimental method for the observation of RF transitions and laser beat resonances in oriented Na vapour,” Nuovo Cimento Soc. Ital. Fis. B 36, 5–20 (1976). [CrossRef]
  11. E. Alipieva, C. Andreeva, L. Avramov, G. Bevilaqua, V. Biancalana, E. Borisova, E. Breschi, S. Cartaleva, Y. Dancheva, and S. Gateva, “Coherent population trapping for magnetic field measurements,” Proc. SPIE 5830, 170–175 (2005). [CrossRef]
  12. C. Reigber, H. Lühr, and P. Schwintzer, “CHAMP mission status,” Adv. Space Res. 30, 129–134 (2002). [CrossRef]
  13. C. Zhang, “In the past, now, the future of satellite magnetic survey,” Geophys. Geochem. Explor. 27, 329–332 (2003).
  14. M. Stähler, R. Wynands, S. Knappe, J. Kitching, L. Hollberg, A. Taichenachev, and V. Yudin, “Coherent population trapping resonances in thermal 85Rb vapor: D1 versus D2 line excitation,” Opt. Lett. 27, 1472–1474 (2002). [CrossRef]
  15. I. Kominis, T. Kornack, J. Allred, and M. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422, 596–599 (2003). [CrossRef]
  16. E. A. Alipieva, S. V. Gateva, and E. T. Taskova, “Coherent population trapping resonance on degenerate two-level system for magnetic field measurement,” Proc. SPIE 5449, 336–341 (2004). [CrossRef]
  17. J. Kitching, S. Knappe, V. Shah, P. Schwindt, C. Griffith, R. Jimenez, J. Preusser, L.-A. Liew, and J. Moreland, “Microfabricated atomic magnetometers and applications,” in 2008 IEEE International Frequency Control Symposium (IEEE, 2008), pp. 789–794.
  18. S. Knappe, P. Schwindt, V. Gerginov, V. Shah, A. Brannon, B. Lindseth, L.-A. Liew, H. Robinson, J. Moreland, and Z. Popovic, “Chip-scale atomic devices at NIST,” Proc. SPIE 6604, 660403 (2007). [CrossRef]
  19. D. Sheng, S. Li, N. Dural, and M. V. Romalis, “Subfemtotesla scalar atomic magnetometry using multipass cells,” Phys. Rev. Lett. 110, 160802 (2013). [CrossRef]
  20. M. Nabighian, M. Ander, V. Grauch, R. Hansen, T. LaFehr, Y. Li, W. Pearson, J. Peirce, J. Phillips, and M. Ruder, “Historical development of the gravity method in exploration,” Geophysics 70, 63ND–89ND (2005).
  21. B. Chéron, H. Gilles, and J. Hamel, “Spatial frequency isotropy of an optically pumped 4He magnetometer,” Eur. Phys. J. Appl. Phys. 13, 143–145 (2001). [CrossRef]
  22. C. Guttin, J. Leger, and F. Stoeckel, “An isotropic earth field scalar magnetometer using optically pumped helium 4,” J. Phys. IV 04, C4-655–C4-659 (1994). [CrossRef]
  23. M. O. Scully and M. Fleischhauer, “High-sensitivity magnetometer based on index-enhanced media,” Phys. Rev. Lett. 69, 1360–1363 (1992). [CrossRef]
  24. M. Fleischhauer and M. O. Scully, “Quantum sensitivity limits of an optical magnetometer based on atomic phase coherence,” Phys. Rev. A 49, 1973–1986 (1994). [CrossRef]
  25. A. Nagel, L. Graf, A. Naumov, E. Mariotti, V. Biancalana, D. Meschede, and R. Wynands, “Experimental realization of coherent dark-state magnetometers,” Europhys. Lett. 44, 31 (1998). [CrossRef]
  26. Y. V. Vladimirova and V. N. Zadkov, “Frequency modulation spectroscopy of coherent dark resonances of multi-level atoms in a magnetic field,” Moscow Univ. Phys. Bull. 65, 493–500 (2010). [CrossRef]
  27. A. Post, Y.-Y. Jau, N. Kuzma, and W. Happer, “Amplitude- versus frequency-modulated pumping light for coherent population trapping resonances at high buffer-gas pressure,” Phys. Rev. A 72, 033417 (2005). [CrossRef]
  28. M. Rosenbluh, V. Shah, S. Knappe, and J. Kitching, “Differentially detected coherent population trapping resonances excited by orthogonally polarized laser fields,” Opt. Express 14, 6588–6594 (2006). [CrossRef]
  29. A. Ben-Kish and M. Romalis, “Dead-zone-free atomic magnetometry with simultaneous excitation of orientation and alignment resonances,” Phys. Rev. Lett. 105, 193601 (2010). [CrossRef]
  30. E. A. Alipieva, S. V. Gateva, E. T. Taskova, V. A. Sarova, and S. Cartaleva, “Magnetic field influence on coherent resonance in a degenerate two-level system,” Proc. SPIE 5226, 134–138 (2003). [CrossRef]
  31. J. Belfi, G. Bevilacqua, V. Biancalana, Y. Dancheva, and L. Moi, “All optical sensor for automated magnetometry based on coherent population trapping,” J. Opt. Soc. Am. B 24, 1482–1489 (2007). [CrossRef]
  32. G.-B. Liu, R.-C. Du, C.-Y. Liu, and S.-H. Gu, “CPT magnetometer with atomic energy level modulation,” Chin. Phys. Lett. 25, 472 (2008). [CrossRef]
  33. J.-J. Song, S. Du, and B. A. Foreman, “Atomic magnetometer based on a double-dark-state system,” Phys. Lett. A 375, 3296–3299 (2011). [CrossRef]
  34. S. Pradhan, R. Behera, and A. Das, “Polarization rotation under two-photon Raman resonance for magnetometry,” Appl. Phys. Lett. 100, 173502 (2012). [CrossRef]
  35. E. Sahin, R. Hamid, M. Celik, C. Birlikseven, G. Ozen, and A. Izmailov, “CPT resonances in two frequency pumping and probe beam configuration,” in 2012 European Frequency and Time Forum (EFTF) (IEEE, 2012), pp. 323–326.
  36. A. N. R. Wynands, “Precision spectroscopy with coherent dark states,” Appl. Phys. B 68, 1–25 (1999). [CrossRef]
  37. P. D. Schwindt, S. Knappe, V. Shah, L. Hollberg, J. Kitching, L.-A. Liew, and J. Moreland, “Chip-scale atomic magnetometer,” Appl. Phys. Lett. 85, 6409–6411 (2004). [CrossRef]
  38. C. Affolderbach, W. Kemp, S. Knappe, A. Nagel, M. Stahler, and R. Wynands, “Magnetometer and frequency standard based on coherently prepared thermal alkali atomic vapors,” in Quantum Electronics and Laser Science Conference (QELS), Technical Digest (IEEE, 2000), pp. 104–105.
  39. J. Preusser, S. Knappe, J. Kitching, and V. Gerginov, “A microfabricated photonic magnetometer,” in IEEE International Frequency Control Symposium, 2009, Joint with the 22nd European Frequency and Time Forum (IEEE, 2009), pp. 1180–1182.
  40. C. Affolderbach, M. Stähler, S. Knappe, and R. Wynands, “An all-optical, high-sensitivity magnetic gradiometer,” Appl. Phys. B 75, 605–612 (2002). [CrossRef]
  41. L. Moi and S. Cartaleva, “Sensitive magnetometers based on dark states,” Europhys. News 43, 24–27 (2012). [CrossRef]
  42. C. Ironside, K. Seunarine, G. Tandoi, and A. Luiten, “Prospects for atomic magnetometers employing hollow core optical fibre,” Proc. SPIE 8414, 84140V (1899). [CrossRef]
  43. M. Klein, M. Hohensee, D. Phillips, and R. Walsworth, “Electromagnetically induced transparency in paraffin-coated vapor cells,” Phys. Rev. A 83, 013826 (2011). [CrossRef]
  44. G. Wasik, W. Gawlik, J. Zachorowski, and W. Zawadzki, “Laser frequency stabilization by Doppler-free magnetic dichroism,” Appl. Phys. B 75, 613–619 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited