OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 10 — Apr. 1, 2014
  • pp: 2170–2176

Quantification of total carbon in soil using laser-induced breakdown spectroscopy: a method to correct interference lines

Gustavo Nicolodelli, Bruno S. Marangoni, Jader S. Cabral, Paulino R. Villas-Boas, Giorgio S. Senesi, Cléber Hilario dos Santos, Renan A. Romano, Aline Segnini, Yves Lucas, Célia R. Montes, and Débora M. B. P. Milori  »View Author Affiliations


Applied Optics, Vol. 53, Issue 10, pp. 2170-2176 (2014)
http://dx.doi.org/10.1364/AO.53.002170


View Full Text Article

Enhanced HTML    Acrobat PDF (368 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The C cycle in the Brazilian forests is very important, mainly for issues addressed to climate changes and soil management. Assessing and understanding C dynamics in Amazonian soils can help scientists to improve models and anticipate scenarios. New methods that allow soil C measurements in situ are a crucial approach for this kind of region, due to the costs for collecting and sending soil samples from the rainforest to the laboratory. Laser-induced breakdown spectroscopy (LIBS) is a multielemental atomic emission spectroscopy technique that employs a highly energetic laser pulse for plasma production and requires neither sample preparation nor the use of reagents. As LIBS takes less than 10 s per sample measurement, it is considered a promising technique for in situ soil analyses. One of the limitations of portable LIBS systems, however, is the common overlap of the emission lines that cannot be spectrally resolved. In this study a method was developed capable of separating the Al interference from the C emission line in LIBS measurements. Two typical forest Brazilian soils rich in Al were investigated: a spodosol (Amazon Forest) and an oxisol (Atlantic Forest). Fifty-three samples were collected and analyzed using a low-resolution LIBS apparatus to measure the intensities of C lines. In particular, two C lines were evaluated, at 193.03 and 247.86 nm. The line at 247.86 nm showed very strong interference with Fe and Si lines, which made quantitative analysis difficult. The line at 193.03 nm showed interference with atomic and ionic Al emission lines, but this problem could be solved by applying a correction method that was proposed and tested in this work. The line at 247.86 was used to assess the proposed model. The strong correlation (Pearson’s coefficient R = 0.91 ) found between the LIBS values and those obtained by a reference technique (dry combustion by an elemental analyzer) supported the validity of the proposed method.

© 2014 Optical Society of America

OCIS Codes
(140.3440) Lasers and laser optics : Laser-induced breakdown
(300.6210) Spectroscopy : Spectroscopy, atomic
(300.6365) Spectroscopy : Spectroscopy, laser induced breakdown

ToC Category:
Spectroscopy

History
Original Manuscript: December 18, 2013
Revised Manuscript: February 14, 2014
Manuscript Accepted: February 14, 2014
Published: March 31, 2014

Citation
Gustavo Nicolodelli, Bruno S. Marangoni, Jader S. Cabral, Paulino R. Villas-Boas, Giorgio S. Senesi, Cléber Hilario dos Santos, Renan A. Romano, Aline Segnini, Yves Lucas, Célia R. Montes, and Débora M. B. P. Milori, "Quantification of total carbon in soil using laser-induced breakdown spectroscopy: a method to correct interference lines," Appl. Opt. 53, 2170-2176 (2014)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-53-10-2170

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited