OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 10 — Apr. 1, 2014
  • pp: 2170–2176

Quantification of total carbon in soil using laser-induced breakdown spectroscopy: a method to correct interference lines

Gustavo Nicolodelli, Bruno S. Marangoni, Jader S. Cabral, Paulino R. Villas-Boas, Giorgio S. Senesi, Cléber Hilario dos Santos, Renan A. Romano, Aline Segnini, Yves Lucas, Célia R. Montes, and Débora M. B. P. Milori  »View Author Affiliations

Applied Optics, Vol. 53, Issue 10, pp. 2170-2176 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (368 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The C cycle in the Brazilian forests is very important, mainly for issues addressed to climate changes and soil management. Assessing and understanding C dynamics in Amazonian soils can help scientists to improve models and anticipate scenarios. New methods that allow soil C measurements in situ are a crucial approach for this kind of region, due to the costs for collecting and sending soil samples from the rainforest to the laboratory. Laser-induced breakdown spectroscopy (LIBS) is a multielemental atomic emission spectroscopy technique that employs a highly energetic laser pulse for plasma production and requires neither sample preparation nor the use of reagents. As LIBS takes less than 10 s per sample measurement, it is considered a promising technique for in situ soil analyses. One of the limitations of portable LIBS systems, however, is the common overlap of the emission lines that cannot be spectrally resolved. In this study a method was developed capable of separating the Al interference from the C emission line in LIBS measurements. Two typical forest Brazilian soils rich in Al were investigated: a spodosol (Amazon Forest) and an oxisol (Atlantic Forest). Fifty-three samples were collected and analyzed using a low-resolution LIBS apparatus to measure the intensities of C lines. In particular, two C lines were evaluated, at 193.03 and 247.86 nm. The line at 247.86 nm showed very strong interference with Fe and Si lines, which made quantitative analysis difficult. The line at 193.03 nm showed interference with atomic and ionic Al emission lines, but this problem could be solved by applying a correction method that was proposed and tested in this work. The line at 247.86 was used to assess the proposed model. The strong correlation (Pearson’s coefficient R = 0.91 ) found between the LIBS values and those obtained by a reference technique (dry combustion by an elemental analyzer) supported the validity of the proposed method.

© 2014 Optical Society of America

OCIS Codes
(140.3440) Lasers and laser optics : Laser-induced breakdown
(300.6210) Spectroscopy : Spectroscopy, atomic
(300.6365) Spectroscopy : Spectroscopy, laser induced breakdown

ToC Category:

Original Manuscript: December 18, 2013
Revised Manuscript: February 14, 2014
Manuscript Accepted: February 14, 2014
Published: March 31, 2014

Gustavo Nicolodelli, Bruno S. Marangoni, Jader S. Cabral, Paulino R. Villas-Boas, Giorgio S. Senesi, Cléber Hilario dos Santos, Renan A. Romano, Aline Segnini, Yves Lucas, Célia R. Montes, and Débora M. B. P. Milori, "Quantification of total carbon in soil using laser-induced breakdown spectroscopy: a method to correct interference lines," Appl. Opt. 53, 2170-2176 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. W. Reeves, “The role of soil organic matter in maintaining soil quality in continuous cropping systems,” Soil Tillage Res. 43, 131–167 (1997). [CrossRef]
  2. C. C. Barford, S. C. Wofsy, M. L. Goulden, J. W. Munger, E. H. Pyle, S. P. Urbanski, L. Hutyra, S. R. Saleska, D. Fitzjarrald, and K. Moore, “Factors controlling long- and short-term sequestration of atmospheric CO2 in a mid-latitude forest,” Science 294, 1688–1691 (2001). [CrossRef]
  3. Climate Change, The Scientific Basis, Intergovernmental Panel Climate Change, 2001, http://www.grida.no/climate/ipcc_tar/wg1/index.htm .
  4. M. J. Metzeger, M. D. A. Rounsevell, L. Acosta-Michlik, R. Leemans, and D. Schotere, “The vulnerability of ecosystem services to land use change,” Agric. Ecosyst. Environ. 114, 69–85 (2006). [CrossRef]
  5. Y. Malhi, D. Wood, T. R. Baker, J. Wright, O. L. Philips, T. Cochrane, P. Meir, J. Chave, S. Almeida, L. Arroyo, N. Higuchi, T. J. Killeen, S. G. Laurance, W. F. Laurance, S. L. Lewis, A. Monteagudo, D. A. Neill, P. N. Vargas, N. C. A. Pitman, C. A. Quesada, R. Salomão, J. N. M. Silva, A. T. Lezama, J. Terborgh, R. V. Martínez, and B. Vinceti, “The regional variation of aboveground live biomass in old-growth Amazonian forests,” Glob. Chang. Biol. 12, 1107–1138 (2006). [CrossRef]
  6. Climate Change, The Physical Science Basis, Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change, WMO/UNEP, Paris (2007).
  7. Y. Lucas, A. Chauvel, R. Boulet, G. Ranzani, and F. Scatolini, “Transição latossolos- podzois sobre a formação Barreiras na região de Manaus, Amazônia,” R. Bras. Ci. Solo 8, 325–335 (1984).
  8. C. R. Montes, Y. Lucas, O. J. R. Pereira, R. Achard, M. Grimaldi, and A. J. Melfi, “Deep plant-derived carbon storage in Amazonian podzols,” Biogeosciences 8, 113–120 (2011). [CrossRef]
  9. N. H. Batjes and J. A. Dijkshoorn, “Carbon and nitrogen stocks in the soils of the Amazon region,” Geoderma 89, 273–286 (1999). [CrossRef]
  10. R. C. Izaurralde, C. W. Rice, L. Wielopolski, J. B. Reeves, A. M. Thomson, R. Harris, B. Francis, S. Mitra, A. G. Rappaport, J. D. Etchevers, K. D. Sayre, B. Govaerts, and G. W. McCarty, “Evaluation of three field-based methods for quantifying soil carbon,” PLoS ONE 8, e55560 (2013). [CrossRef]
  11. D. M. B. P. Milori, A. Segnini, W. T. L. Da Silva, A. Posadas, V. Mares, R. Quiroz, and L. Martin-Neto, “Emerging techniques for soil carbon measurements,” in CCAFS Working Paper 2 (2011), pp. 1–26.
  12. R. J. Gehl and C. W. Rice, “Emerging technologies for in situ measurement of soil carbon,” Clim. Change 80, 43–54 (2007). [CrossRef]
  13. D. Santos, L. V. G. Tarelho, F. J. Krug, D. M. B. P. Milori, L. Martin-Neto, and N. D. Vieira, “Espectrometria de emissão ótica com plasma induzido por laser (LIBS): fundamentos, aplicações e perspectivas,” Revista Analytica 24, 72–81 (2006).
  14. C. Pasquini, J. Cortez, L. M. C. Silva, and F. B. Gonzaga, “Laser induced breakdown spectroscopy,” J. Br. Chem. Soc. 18, 463–512 (2007). [CrossRef]
  15. D. A. Cremers, M. H. Ebinger, D. D. Breshears, P. J. Unkefer, S. A. Kammerdiener, M. J. Ferris, K. M. Catlett, and J. R. Brown, “Measuring total soil carbon with laser-induced breakdown spectroscopy (LIBS),” J. Environ. Quality 30, 2202–2206 (2001). [CrossRef]
  16. M. H. Ebinger, M. L. Norfleet, D. D. Breshears, D. A. Cremers, M. J. Ferris, P. J. Unkefer, M. S. Lamb, K. L. Goddard, and C. W. Meyer, “Extending the applicability of laser-induced breakdown spectroscopy for total soil carbon measurement,” Soil Sci. Soc. Am. J. 67, 1616–1619 (2003). [CrossRef]
  17. R. M. Da Silva, D. M. B. P. Milori, E. C. Ferreira, E. J. Ferreira, F. J. Krug, and L. Martin-Neto, “Total carbon measurement in whole tropical soil sample,” Spectrochim. Acta, Part B 63, 1221–1224 (2008). [CrossRef]
  18. M. V. Belkov, V. S. Burakov, A. De Giacomo, V. V. Kiris, S. N. Raikov, and N. V. Tarasenko, “Comparison of two laser-induced breakdown spectroscopy techniques for total carbon measurement in soils,” Spectrochim. Acta, Part B 64, 899–904 (2009). [CrossRef]
  19. A. M. Popov, F. Colao, and R. Fantoni, “Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils,” J. Anal. At. Spectrom. 25, 837–848 (2010). [CrossRef]
  20. D. E. Lewis, J. Martinez, C. A. Akpovo, L. Johnson, A. Chauhan, and M. D. Edington, “Discrimination of bacteria from Jamaican bauxite soils using laser-induced breakdown spectroscopy,” Anal. Bioanal. Chem. 401, 2225–2236 (2011). [CrossRef]
  21. S. C. Jantzi and J. R. Almirall, “Characterization and forensic analysis of soil samples using laser-induced breakdown spectroscopy (LIBS),” Anal. Bioanal. Chem. 400, 3341–3351 (2011). [CrossRef]
  22. E. C. Ferreira, D. M. B. P. Milori, E. J. Ferreira, L. M. Dos Santos, L. Martin-Neto, and A. R. de A. Nogueira, “Evaluation of laser induced breakdown spectroscopy for multielemental determination in soils under sewage sludge application,” Talanta 85, 435–440 (2011). [CrossRef]
  23. G. S. Senesi, M. Dell’Aglio, R. Gaudiuso, A. DeGiacomo, C. Zaccone, O. De Pascale, T. M. Miano, and M. Capitelli, “Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium,” Environ. Res. 109, 413–420 (2009). [CrossRef]
  24. M. Dell’Aglio, R. Gaudiuso, G. S. Senesi, A. DeGiacomo, C. Zaccone, T. M. Miano, and O. DePascale, “Monitoring of Cr, Cu, Pb, V and Zn in polluted soils by laser induced breakdown spectroscopy,” J. Environ. Monit. 13, 1422–1426 (2011).
  25. D. Diaz, D. W. Hahn, and A. Molinat, “Evaluation of laser-induced breakdown spectroscopy (LIBS) as a measurement technique for evaluation of total elemental concentration in soils,” Appl. Spectrosc. 66, 99–106 (2012). [CrossRef]
  26. K. K. Ayyalasomayajula, Y. Y. Fang, J. P. Singh, D. L. McIntyre, and J. Jain, “Application of laser-induced breakdown spectroscopy for total carbon quantification in soil samples,” Appl. Opt. 51, B149–B154 (2012). [CrossRef]
  27. X. N. He, W. Hu, C. M. Li, L. B. Guo, and Y. F. Lu, “Generation of high-temperature and low-density plasmas for improved spectral resolutions in laser-induced breakdown spectroscopy,” Opt. Express 19, 10997–11006 (2011). [CrossRef]
  28. R. Wisbrun, I. Schechter, R. Niessner, H. Schroeder, and K. L. Kompa, “Detector for trace elemental analysis of solid environmental-samples by laser plasma spectroscopy,” Anal. Chem. 66, 2964–2975 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited