OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 10 — Apr. 1, 2014
  • pp: B1–B7

Precise determination of full matrix of piezo-optic coefficients with a four-point bending technique: the example of lithium niobate crystals

Oleg Krupych, Viktoriya Savaryn, and Rostyslav Vlokh  »View Author Affiliations

Applied Optics, Vol. 53, Issue 10, pp. B1-B7 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (230 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A recently proposed technique representing a combination of digital imaging laser interferometry with a classical four-point bending method is applied to a canonical nonlinear optical crystal, LiNbO3, to precisely determine a full matrix of its piezo-optic coefficients (POCs). The contribution of a secondary piezo-optic effect to the POCs is investigated experimentally and analyzed theoretically. Based on the POCs thus obtained, a full matrix of strain-optic coefficients (SOCs) is calculated and the appropriate errors are estimated. A comparison of our experimental errors for the POCs and SOCs with the known reference data allows us to claim the present technique as the most precise.

© 2014 Optical Society of America

OCIS Codes
(120.4530) Instrumentation, measurement, and metrology : Optical constants
(160.3730) Materials : Lithium niobate
(170.0110) Medical optics and biotechnology : Imaging systems
(260.1180) Physical optics : Crystal optics
(260.1440) Physical optics : Birefringence
(260.3160) Physical optics : Interference

Original Manuscript: November 18, 2013
Revised Manuscript: December 13, 2013
Manuscript Accepted: December 17, 2013
Published: February 3, 2014

Oleg Krupych, Viktoriya Savaryn, and Rostyslav Vlokh, "Precise determination of full matrix of piezo-optic coefficients with a four-point bending technique: the example of lithium niobate crystals," Appl. Opt. 53, B1-B7 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. I. I. Grakh and A. F. Mozhanskaya, “A type of mechanically anisotropic, optically sensitive material,” Mekhanika Polimerov 5, 835–839 (1971).
  2. Y.-J. Weber, “Determination of internal strain by optical measurements,” Phys. Rev. B 51, 12209–12215 (1995). [CrossRef]
  3. T. S. Narasimhamurty, Photoelastic and Electrooptic Properties of Crystals (Plenum, 1981).
  4. I. I. Slezinger, A. N. Alievskaya, and Yu. V. Mironov, “Piezo-optic devices,” Izmeritelnaya Tekhnika 12, 17–19 (1985).
  5. M. Billardon and J. Badoz, “Birefringence modulator,” C. R. Acad. Sci. Ser. B 262, 1672–1675 (1966).
  6. J. C. Kemp, “Piezo-optical birefringence modulators: new use for a long-known effect,” J. Opt. Soc. Am. 59, 950–954 (1969).
  7. B. A. Auld, Acoustic Fields and Waves in Solids (Krieger, 1990).
  8. V. I. Balakshii, V. N. Parygin, and L. E. Chirkov, Physical Fundamentals of Acoustooptics (Radio i Sviaz’, 1985).
  9. J. Xu and R. Stroud, Acousto-Optic Devices: Principles, Design, and Applications (Wiley, 1992).
  10. M. P. Shaskolskaya, Acoustic Crystals (Nauka, 1982).
  11. M. J. Weber, Handbook of Optical Materials (CRC Press, 2003).
  12. F. Pockels, Lehrbuch der Kristallooptik (Teubner Berlin, 1906).
  13. B. H. Mytsyk, “Methods for the studies of the piezo-optical effect in crystals and the analysis of experimental data. Part I. Methodology for the studies of piezo-optical effect,” Ukr. J. Phys. Opt. 4, 1–26 (2003). [CrossRef]
  14. Yu. Vasylkiv, O. Kvasnyuk, O. Krupych, O. Mys, O. Maksymuk, and R. Vlokh, “Reconstruction of 3D stress fields basing on piezo-optic experiment,” Ukr. J. Phys. Opt. 10, 22–37 (2009). [CrossRef]
  15. I. Skab, I. Smaga, V. Savaryn, Yu. Vasylkiv, and R. Vlokh, “Torsion method for measuring piezo-optic coefficients,” Cryst. Res. Technol. 46, 23–36 (2011). [CrossRef]
  16. I. Skab, “Optical anisotropy induced by torsion stresses in the crystals belonging to point symmetry groups 3 and 3¯,” Ukr. J. Phys. Opt. 13, 158–164 (2012). [CrossRef]
  17. Yu. Vasylkiv, V. Savaryn, I. Smaga, I. Skab, and R. Vlokh, “On determination of sign of the piezo-optic coefficients using torsion method,” Appl. Opt. 50, 2512–2518 (2011). [CrossRef]
  18. O. Krupych, V. Savaryn, I. Skab, and R. Vlokh, “Interferometric measurements of piezo-optic coefficients by means of four-point bending method,” Ukr. J. Phys. Opt. 12, 150–159 (2011). [CrossRef]
  19. O. Krupych, V. Savaryn, A. Krupych, I. Klymiv, and R. Vlokh, “Determination of piezo-optic coefficients of crystals by means of four-point bending,” Appl. Opt. 52, 4054–4061 (2013). [CrossRef]
  20. S. P. Timoshenko, Strength of Materials (Izdatelstvo NTL, 1965).
  21. R. T. Smith and F. S. Welsh, “Temperature dependence of the elastic, piezoelectric, and dielectric constants of lithium tantalate and lithium niobate,” J. Appl. Phys. 42, 2219–2230 (1971). [CrossRef]
  22. Yu. I. Sirotin and M. P. Shaskolskaya, Fundamentals of Crystal Physics (Nauka, 1975).
  23. “Standards on piezoelectric crystals,” Proc. Inst. Radio Eng.37, 1378–1395 (1949).
  24. B. G. Mytsyk, A. S. Andrushchak, N. M. Demyanyshyn, Y. P. Kost’, A. V. Kityk, P. Mandracci, and W. Schranz, “Piezo-optic coefficients of MgO-doped LiNbO3 crystals,” Appl. Opt. 48, 1904–1911 (2009). [CrossRef]
  25. R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys. A 37, 191–203 (1985). [CrossRef]
  26. B. Mytsyk, N. Demyanyshyn, I. Martynyuk-Lototska, and R. Vlokh, “Piezo-optic, photoelastic, and acousto-optic properties of SrB4O7 crystals,” Appl. Opt. 50, 3889–3895 (2011). [CrossRef]
  27. A. S. Andrushchak, B. G. Mytsyk, H. P. Laba, O. V. Yurkevych, I. M. Solskii, A. V. Kityk, and B. Sahraoui, “Complete sets of elastic constants and photoelastic coefficients of pure and MgO-doped lithium niobate crystals at room temperature,” J. Appl. Phys. 106, 073510 (2009). [CrossRef]
  28. L. P. Avakyants, D. F. Kiselev, and N. N. Shchitkov, “Measurement of the photoelastic coefficients of lithium niobate single crystals,” Sov. Phys. 18, 899–901 (1976).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited