OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 10 — Apr. 1, 2014
  • pp: B12–B21

Laser speckle probes of relaxation dynamics in soft porous media saturated by near-critical fluids

Dmitry A. Zimnyakov, Sergey P. Chekmasov, Olga V. Ushakova, Elena A. Isaeva, Victor N. Bagratashvili, and Sergey B. Yermolenko  »View Author Affiliations


Applied Optics, Vol. 53, Issue 10, pp. B12-B21 (2014)
http://dx.doi.org/10.1364/AO.53.000B12


View Full Text Article

Enhanced HTML    Acrobat PDF (555 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Speckle correlation analysis was applied to study the relaxation dynamics in soft porous media saturated by near-critical carbon dioxide. The relaxation of soft matrix deformation was caused by a stepwise change in the fluid pressure. It was found that the deformation rate in the course of relaxation and the relaxation time strongly depend on the temperature of the system. The values of relaxation time reach their maximal values in the vicinity of the critical point of saturating fluid. The contributions of hydrodynamic relaxation of the fluid density and viscoelastic relaxation of the porous matrix to its creeping are analyzed.

© 2014 Optical Society of America

OCIS Codes
(030.6140) Coherence and statistical optics : Speckle
(290.4210) Scattering : Multiple scattering
(290.7050) Scattering : Turbid media

History
Original Manuscript: November 12, 2013
Revised Manuscript: December 14, 2013
Manuscript Accepted: December 16, 2013
Published: February 3, 2014

Citation
Dmitry A. Zimnyakov, Sergey P. Chekmasov, Olga V. Ushakova, Elena A. Isaeva, Victor N. Bagratashvili, and Sergey B. Yermolenko, "Laser speckle probes of relaxation dynamics in soft porous media saturated by near-critical fluids," Appl. Opt. 53, B12-B21 (2014)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-53-10-B12


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett. 60, 1134–1137 (1988). [CrossRef]
  2. A. G. Yodh, N. Georgiades, and D. J. Pine, “Diffusing-wave interferometry,” Opt. Commun. 83, 56–59 (1991). [CrossRef]
  3. M. H. Kao, A. G. Yodh, and D. J. Pine, “Observation of Brownian motion on the time scale of hydrodynamic interactions,” Phys. Rev. Lett. 70, 242–245 (1993). [CrossRef]
  4. D. A. Boas and A. G. Yodh, “Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation,” J. Opt. Soc. Am. A 14, 192–215 (1997). [CrossRef]
  5. N. Menon and D. J. Durian, “The dynamics of grains in flowing sand,” Science 275, 1920–1922 (1997). [CrossRef]
  6. D. J. Durian, D. A. Weitz, and D. J. Pine, “Multiple light-scattering probes of foam structure and dynamics,” Science 252, 686–688 (1991). [CrossRef]
  7. D. A. Boas, L. E. Campbell, and A. G. Yodh, “Scattering and imaging with diffusing temporal field correlations,” Phys. Rev. Lett. 75, 1855–1858 (1995). [CrossRef]
  8. F. Scheffold, S. Romer, F. Cardinaux, H. Bissig, A. Stradner, L. F. Rojas-Ochoa, V. Trappe, C. Urban, S. E. Skipetrov, L. Cipelletti, and P. Schurtenberger, “New trends in optical microrheology of complex fluids and gels,” Prog. Colloid Polym. Sci. 123, 141–146 (2004). [CrossRef]
  9. L. Brunel, A. Brun, P. Snabre, and L. Cipelletti, “Adaptive speckle imaging interferometry: a new technique for the analysis of microstructure dynamics, drying processes and coating formation,” Opt. Express 15, 15250–15259 (2007). [CrossRef]
  10. F. Scheffold, S. E. Skipetrov, S. Romer, and P. Schurtenberger, “Diffusing wave spectroscopy of non-ergodic media,” Phys. Rev. E 63, 061404 (2001). [CrossRef]
  11. R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: a tool to study time-varying dynamics,” Rev. Sci. Instrum. 76, 093110 (2005). [CrossRef]
  12. V. Viasnoff, F. Lequeux, and D. J. Pine, “Multispeckle diffusing-wave spectroscopy: a tool to study slow relaxation and time-dependent dynamics,” Rev. Sci. Instrum. 73, 2336–2344 (2002). [CrossRef]
  13. P. Zakharov, F. Cardinaux, and F. Scheffold, “Multispeckle diffusing-wave spectroscopy with a single-mode detection scheme,” Phys. Rev. E 73, 011413 (2006). [CrossRef]
  14. D. A. Zimnyakov, P. V. Zakharov, V. A. Trifonov, and O. I. Chanilov, “Dynamic light scattering study of the interface evolution in porous media,” JETP Lett. 74, 216–221 (2001). [CrossRef]
  15. D. A. Zimnyakov, A. V. Sadovoy, M. A. Vilenskii, P. V. Zakharov, and R. Myllylä, “Critical behavior of phase interfaces in porous media: analysis of scaling properties with the use of noncoherent and coherent light,” J. Exp. Theor. Phys. 108, 311–325 (2009). [CrossRef]
  16. A. Duri, D. A. Sessoms, V. Trappe, and L. Cipelletti, “Resolving long-range spatial correlations in jammed colloidal systems using photon correlation imaging,” Phys. Rev. Lett. 102, 085702 (2009). [CrossRef]
  17. P. Ballesta, Ch. Ligoure, and L. Cipelletti, “Temporal heterogeneity of the slow dynamics of a colloidal paste,” in Proceedings of 3rd International Symposium on Slow Dynamics in Complex Systems (AIP, 2004), Vol. 708, pp. 68–71.
  18. A. Duri, H. Bissig, V. Trappe, and L. Cipelletti, “Time-resolved-correlation measurements of temporally heterogeneous dynamics,” Phys. Rev. E 72, 051401 (2005). [CrossRef]
  19. L. Cipelletti and L. Ramos, “Slow dynamics in glassy soft matter,” J. Phys. Condens. Matter 17, R253–R285 (2005). [CrossRef]
  20. D. A. Zimnyakov, D. N. Agafonov, A. P. Sviridov, A. I. Omel’chenko, L. V. Kuznetsova, and V. N. Bagratashvili, “Speckle-contrast monitoring of tissue thermal modification,” Appl. Opt. 41, 5989–5996 (2002). [CrossRef]
  21. D. A. Zimnyakov, A. P. Sviridov, L. V. Kuznetsova, S. A. Baranov, and N. Yu. Ignat’ieva, “Monitoring of tissue thermal modification with a bundle-based full-field speckle analyzer,” Appl. Opt. 45, 4480–4490 (2006). [CrossRef]
  22. D. A. Zimnyakov, A. A. Isaeva, E. A. Isaeva, O. V. Ushakova, S. P. Chekmasov, and S. A. Yuvchenko, “Analysis of the scatter growth in dispersive media with the use of dynamic light scattering,” Appl. Opt. 51, C62–C69 (2012). [CrossRef]
  23. X.-L. Wu, D. J. Pine, P. M. Chaikin, J. P. Huang, and D. A. Weitz, “Diffusing-wave spectroscopy in a shear flow,” J. Opt. Soc. Am. B 7, 15–20 (1990). [CrossRef]
  24. J. Crassous, M. Erpelding, and A. Amon, “Diffusive waves in a dilating scattering medium,” Phys. Rev. Lett. 103, 013903 (2009). [CrossRef]
  25. M. Erpelding, A. Amon, and J. Crassous, “Diffusive wave spectroscopy applied to the spatially resolved deformation of solid,” Phys. Rev. E 78, 046104 (2008). [CrossRef]
  26. M. Erpelding, B. Dollet, A. Faisant, J. Crassous, and A. Amon, “Diffusing-wave spectroscopy contribution to strain analysis,” Strain 49, 167–174 (2013). [CrossRef]
  27. Ph. G. Jessop, T. Ikariya, and R. Noyori, “Homogeneous catalytic hydrogenation of supercritical carbon dioxide,” Nature 368, 231–233 (1994). [CrossRef]
  28. C. A. Eckert, B. L. Knutson, and P. G. Debendetti, “Supercritical fluids as solvents for chemical and materials processing,” Nature 383, 313–318 (1996). [CrossRef]
  29. X.-R. Ye, Y. Lin, C. Wang, and C. M. Wai, “Supercritical fluid fabrication of metal nanowires and nanorods templated by multiwalled carbon nanotubes,” Adv. Mater. 15, 316–319 (2003). [CrossRef]
  30. S.-D. Yeo and E. Kiran, “Formation of polymer particles with supercritical fluids,” J. Supercrit. Fluids 34, 287–308 (2005). [CrossRef]
  31. E. Akbarinezhad and M. Sabouri, “Synthesis of exfoliated conductive polyaniline–graphite nanocomposites in supercritical CO2,” J. Supercrit. Fluids 75, 81–87 (2013). [CrossRef]
  32. V. Mulloni and L. Pavesi, “Porous silicon microcavities as optical chemical sensors,” Appl. Phys. Lett. 76, 2523–2525 (2000). [CrossRef]
  33. M. Holmvall, T. Uesaka, F. Drolet, and S. B. Lindström, “Transfer of a microfluid to a stochastic fibre network,” J. Fluids Struct. 27, 937–946 (2011). [CrossRef]
  34. F. J. Galindo-Rosales, L. Campo-Deaño, F. T. Pinho, E. van Bokhorst, P. J. Hamersma, M. S. N. Oliveira, and M. A. Alves, “Microfluidic systems for the analysis of viscoelastic fluid flow phenomena in porous media,” Microfluid. Nanofluid. 12, 485–498 (2012). [CrossRef]
  35. Z. Y. Xiao, A. Wang, J. Perumal, and D.-P. Kim, “Facile fabrication of monolithic 3D porous silica microstructures and a microfluidic system embedded with the microstructure,” Adv. Funct. Mater. 20, 1473–1479 (2010). [CrossRef]
  36. S. S. Alpert, Y. Yeh, and E. Lipworth, “Observation of time-dependent concentration fluctuations in a binary mixture near the critical temperature using a He-Ne laser,” Phys. Rev. Lett. 14, 486–488 (1965). [CrossRef]
  37. S. A. Casalnuovo, R. C. Mockler, and W. J. O’Sullivan, “Rayleigh-linewidth measurements on thin critical fluid films,” Phys. Rev. A 29, 257–270 (1984). [CrossRef]
  38. M. V. Avdeev, A. N. Konovalov, V. N. Bagratashvili, V. K. Popov, S. I. Tsypina, M. Sokolova, K. Jie, and M. Poliakoff, “The fiber optic reflectometer: a new and simple probe for refractive index and phase separation measurements in gases, liquids, and supercritical fluids,” Phys. Chem. Chem. Phys. 6, 1258–1263 (2004). [CrossRef]
  39. A. A. Novitskiy, V. N. Bagratashvili, and M. Poliakoff, “Applying a fibre optic reflectometer to phase measurements in sub- and supercritical water mixtures,” J. Phys. Chem C 115, 1143–1149 (2011). [CrossRef]
  40. V. G. Arakcheev, A. A. Valeev, V. B. Morozov, and A. N. Olenin, “CARS diagnostics of molecular media under nanoporous confinement,” Laser Phys. 18, 1451–1458 (2008). [CrossRef]
  41. V. G. Arakcheev, V. N. Bagratashvili, S. A. Dubyanskiy, V. B. Morozov, A. N. Olenin, V. K. Popov, V. G. Tunkin, A. A. Valeev, and D. V. Yakovlev, “Vibrational line shapes of liquid and sub-critical carbon dioxide in nano-pores,” J. Raman Spectrosc. 39, 750–755 (2008). [CrossRef]
  42. E. W. Lemmon, M. O. McLinden, and D. G. Friend, “Thermophysical properties of fluid systems,” in NIST Chemistry WebBook, NIST Standard Reference Database Number 69, P. J. Linstrom and W. G. Mallard, eds. (NIST, 2012), http://webbook.nist.gov/chemistry/fluid/ .
  43. G. Maret and P. E. Wolf, “Multiple light scattering from disordered media. The effect of Brownian motion of scatterers,” Z. Phys. B 65, 409–413 (1987). [CrossRef]
  44. A. Ishimaru, Wave Propagation and Scattering in Random Media (Wiley-IEEE, 1999).
  45. H. Z. Cummins and E. R. Pike, eds. Photon Correlation and Light Beating Spectroscopy (Plenum, 1974).
  46. S. L. Jacques, “Monte-Carlo simulations of light transport in tissue (steady state and time of flight),” in Optical-Thermal Response of Laser Irradiated Tissue, A. J. Welsh and M. J. C. van Gemert, eds., 2nd ed. (Springer, 2011), pp. 109–144.
  47. P. D. Kaplan, M. H. Kao, A. G. Yodh, and D. J. Pine, “Geometric constraints for the design of diffusing-wave spectroscopy experiments,” Appl. Opt. 32, 3828–3836 (1993).
  48. L. F. Rojas, M. Bina, G. Cerchiari, M. A. Escobedo-Sanchez, F. Ferri, and F. Scheffold, “Photon path length distribution in random media from spectral speckle intensity correlations,” Eur. Phys. J. Spec. Top. 199, 167–180 (2011). [CrossRef]
  49. D. A. Zimnyakov, L. V. Kuznetsova, O. V. Ushakova, and R. Myllylä, “On the estimate of effective optical parameters of close-packed fibrillar media,” Quantum Electron. 37, 9–16 (2007). [CrossRef]
  50. S. J. Gregg and K. S. W. Sing, Adsorption, Surface Area and Porosity, 2nd ed. (Academic, 1982).
  51. G. W. Scherer, “Structure and properties of gels,” Cement and Concrete Research 29, 1149–1157 (1999). [CrossRef]
  52. G. W. Scherer, “Dynamic pressurization method for measuring permeability and modulus: I. Theory,” Mat. Constr. 39, 1041–1057 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited