OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 10 — Apr. 1, 2014
  • pp: B128–B139

Two wavelength Mueller matrix reconstruction of blood plasma films polycrystalline structure in diagnostics of breast cancer

V. A. Ushenko, O. V. Dubolazov, and A. O. Karachevtsev  »View Author Affiliations

Applied Optics, Vol. 53, Issue 10, pp. B128-B139 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1238 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The model of a Mueller matrix description of mechanisms of optical anisotropy typical for polycrystalline films of blood plasma—optical activity, birefringence, as well as linear and circular dichroism—is suggested. On this basis, the algorithms of reconstruction of parameters distribution (polarization plane rotations, phase shifts, coefficients of linear and circular dichroism) of the indicated types of anisotropy were found for different spectrally selective ranges. Within the statistical analysis of such distributions, the objective criteria of differentiation of films of blood plasma taken from healthy women and breast cancer patients were determined. From the point of view of probative medicine, the operational characteristics (sensitivity, specificity and accuracy) of the method of Mueller matrix reconstruction of optical anisotropy parameters were found, and its efficiency in diagnostics of breast cancer was demonstrated.

© 2014 Optical Society of America

OCIS Codes
(080.2730) Geometric optics : Matrix methods in paraxial optics
(170.0110) Medical optics and biotechnology : Imaging systems
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine

Original Manuscript: November 18, 2013
Revised Manuscript: January 14, 2014
Manuscript Accepted: January 15, 2014
Published: February 19, 2014

Virtual Issues
Vol. 9, Iss. 6 Virtual Journal for Biomedical Optics

V. A. Ushenko, O. V. Dubolazov, and A. O. Karachevtsev, "Two wavelength Mueller matrix reconstruction of blood plasma films polycrystalline structure in diagnostics of breast cancer," Appl. Opt. 53, B128-B139 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. H. Smith, P. Burke, A. Lompado, E. Tanner, and L. W. Hillman, “Mueller matrix imaging polarimetry in dermatology,” Proc. SPIE 3991, 210–216 (2000). [CrossRef]
  2. M. H. Smith, “Interpreting Mueller matrix images of tissues,” Proc. SPIE 4257, 82–89 (2001). [CrossRef]
  3. O. V. Angelsky, A. Y. Bekshaev, P. P. Maksimyak, A. P. Maksimyak, I. I. Mokhun, S. G. Hanson, C. Y. Zenkova, and A. V. Tyurin, “Circular motion of particles suspended in a Gaussian beam with circular polarization validates the spin part of the internal energy flow,” Opt. Express 20, 11351–11356 (2012). [CrossRef]
  4. T. T. Tower and R. T. Tranquillo, “Alignment maps of tissues: I. microscopic elliptical polarimetry,” Biophys. J. 81, 2954–2963 (2001). [CrossRef]
  5. J. M. Bueno and J. Jaronski, “Spatially resolved polarization properties for in vitro corneas,” Ophthal. Physiol. Opt. 21, 384–392 (2001). [CrossRef]
  6. J. M. Bueno and F. Vargas-Martin, “Measurements of the corneal birefringence with a liquid-crystal imaging polariscope,” Appl. Opt. 41, 116–124 (2002). [CrossRef]
  7. A. Y. Bekshaev, O. V. Angelsky, S. G. Hanson, and C. Y. Zenkova, “Scattering of inhomogeneous circularly polarized optical field and mechanical manifestation of the internal energy flows,” Phys. Rev. A 86, 023847 (2012). [CrossRef]
  8. T. T. Tower and R. T. Tranquillo, “Alignment maps of tissues: II. fast harmonic analysis for imaging,” Biophys. J. 81, 2964–2971 (2001). [CrossRef]
  9. M. Shribak and R. Oldenbourg, “Techniques for fast and sensitive measurements of two-dimensional birefringence distributions,” Appl. Opt. 42, 3009–3017 (2003). [CrossRef]
  10. S. N. Savenkov, V. V. Marienko, E. A. Oberemok, and O. I. Sydoruk, “Generalized matrix equivalence theorem for polarization theory,” Phys. Rev. E 74, 605–607 (2006). [CrossRef]
  11. O. V. Angelsky, P. V. Polyanskii, and C. V. Felde, “The emerging field of correlation optics,” Opt. Photonics News 23, 25–29 (2012). [CrossRef]
  12. S. Lu and R. A. Chipman, “Interpretation of Mueller matrices based on polar decomposition,” J. Opt. Soc. Am. A 13, 1106–1113 (1996). [CrossRef]
  13. A. G. Ushenko and V. P. Pishak, “Laser polarimetry of biological tissue: principles and applications,” in Handbook of Coherent-Domain Optical Methods: Biomedical Diagnostics, Environmental and Material Science, V. V. Tuchin, ed. (Kluwer Academic, 2004) Vol. 1, pp. 93–138.
  14. Y. A. Ushenko, Y. Y. Tomka, and A. V. Dubolazov, “Complex degree of mutual anisotropy of extracellular matrix of biological tissues,” Opt. Spectrosc. 110, 814–819 (2011). [CrossRef]
  15. Y. A. Ushenko, “Investigation of formation and interrelations of polarization singular structure and Mueller-matrix images of biological tissues and diagnostics of their cancer changes,” J. Biomed. Opt. 16, 066006 (2011). [CrossRef]
  16. O. V. Angelsky, Y. Y. Tomka, A. G. Ushenko, Y. G. Ushenko, and Y. A. Ushenko, “Investigation of 2D Mueller matrix structure of biological tissues for pre-clinical diagnostics of their pathological states,” J. Phys. D 38, 4227–4235 (2005). [CrossRef]
  17. Y. O. Ushenko, Y. Y. Tomka, I. Z. Misevitch, V. V. Istratyy, and O. I. Telenga, “Complex degree of mutual anisotropy of biological liquid crystals nets,” Opt. Eng. 50, 039001 (2011). [CrossRef]
  18. O. V. Angel’skii, A. G. Ushenko, A. D. Archelyuk, S. B. Ermolenko, and D. N. Burkovets, “Structure of matrices for the transformation of laser radiation by biofractals,” Quantum Electron. 29, 1074–1077 (1999). [CrossRef]
  19. Y. A. Ushenko, Y. Y. Tomka, A. V. Dubolazov, and O. Y. Telenga, “Diagnostics of optical anisotropy changes in biological tissues using Müller matrix,” Quantum Electron. 41, 273–277 (2011). [CrossRef]
  20. Y. A. Ushenko, O. V. Dubolazov, and A. O. Karachevtsev, “Statistical structure of skin derma Mueller matrix images in the process of cancer changes,” Opt. Mem. Neural Netw. 20, 145–154 (2011). [CrossRef]
  21. O. V. Angelsky, Y. A. Ushenko, A. V. Dubolazov, and O. Y. Telenha, “The interconnection between the coordinate distribution of Mueller-matrixes images characteristic values of biological liquid crystals net and the pathological changes of human tissues,” Adv. Opt. Technol. 2010, 130659 (2010).
  22. Y. A. Ushenko, O. I. Olar, A. V. Dubolazov, V. O. Balanetskaya, V. P. Unguryan, N. I. Zabolotna, and B. P. Oleinichenko,“Mueller-matrix diagnostics of optical properties inherent to polycrystalline networks of human blood plasma,” Semicond. Phys., Quantum Electron. Optoelectron. 14, 98–105 (2011).
  23. Y. A. Ushenko, A. V. Dubolazov, V. O. Balanetskaya, A. O. Karachevtsev, and V. A. Ushenko, “Wavelet-analysis of polarization maps of human blood plasma,” Opt. Spectrosc. 113, 332–343 (2012). [CrossRef]
  24. Y. A. Ushenko, P. O. Angelskii, A. V. Dubolazov, A. O. Karachevtsev, M. I. Sidor, O. P. Mintser, B. P. Oleinichenko, and L. I. Bizer, “Complex polarization-phase and spatial-frequency selections of laser images of blood-plasma films in diagnostics of changes in their polycrystalline structure,” Opt. Spectrosc. 115, 601–609 (2013). [CrossRef]
  25. Y. A. Ushenko, “Concerted spatial-frequency and polarization-phase filtering of laser images of polycrystalline networks of blood plasma smears,” J. Biomed. Opt. 17, 117005 (2012). [CrossRef]
  26. P. O. Angelsky, A. G. Ushenko, A. V. Dubolazov, M. I. Sidor, G. B. Bodnar, G. Koval, and L. Trifonyuk, “The singular approach for processing polarization-inhomogeneous laser images of blood plasma layers,” J. Opt. 15, 044030 (2013). [CrossRef]
  27. N. Ortega-Quijano, B. Haj-Ibrahim, E. García-Caurel, J. L. Arce-Diego, and R. Ossikovski, “Experimental validation of Mueller matrix differential decomposition,” Opt. Express 20, 1151–1163 (2012). [CrossRef]
  28. N. Ortega-Quijano and J. L. Arce-Diego, “Mueller matrix differential decomposition,” Opt. Lett. 36, 1942–1944 (2011). [CrossRef]
  29. R. Ossikovski, A. De Martino, and S. Guyot, “Forward and reverse product decompositions of depolarizing Mueller matrices,” Opt. Lett. 32, 689–691 (2007). [CrossRef]
  30. A. R. Goldfarb, L. J. Saidel, and E. Mosovich, “The ultraviolet absorption spectra of proteins,” J. Biol. Chem. 193, 397–404 (1951).
  31. W. J. Waddell, “A simple ultraviolet spectrophotometric method for the determination of protein,” J. Lab. Clin. Med. 48, 311–314 (1956).
  32. H. Arvin, “Optical properties of thin layers of bovine serum albumin, γ-globulin, and hemoglobin,” Appl. Spectrosc. 40, 313–318 (1986). [CrossRef]
  33. G. P. Petrova, A. V. Boiko, K. V. Fedorova, I. A. Sergeeva, N. V. Sokol, and T. N. Tichonova, “Optical properties of solutions consisting of albumin and γ-globulin molecules in different ratio modeling blood serum,” Laser Phys. 19, 1303–1307 (2009). [CrossRef]
  34. L. D. Cassidy, “Basic concepts of statistical analysis for surgical research,” J. Surg. Res. 128, 199–206 (2005). [CrossRef]
  35. C. S. Davis, Statistical Methods of the Analysis of Repeated Measurements (Springer-Verlag, 2002), p. 744.
  36. A. Petrie and B. Sabin, Medical Statistics at a Glance (Blackwell, 2005), p. 157.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited