OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 10 — Apr. 1, 2014
  • pp: B22–B26

Magneto-optical Faraday rotation of semiconductor nanoparticles embedded in dielectric matrices

Andriy I. Savchuk, Ihor D. Stolyarchuk, Vitaliy V. Makoviy, and Oleksandr A. Savchuk  »View Author Affiliations

Applied Optics, Vol. 53, Issue 10, pp. B22-B26 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (499 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Faraday rotation has been studied for CdS, CdTe, and CdS:Mn semiconductor nanoparticles synthesized by colloidal chemistry methods. Additionally these materials were prepared in a form of semiconductor nanoparticles embedded in polyvinyl alcohol films. Transmission electron microscopy and atomic force microscopy analyses served as confirmation of nanocrystallinity and estimation of the average size of the nanoparticles. Spectral dependence of the Faraday rotation for the studied nanocrystals and nanocomposites is correlated with a blueshift of the absorption edge due to the confinement effect in zero-dimensional structures. Faraday rotation spectra and their temperature behavior in Mn-doped nanocrystals demonstrates peculiarities, which are associated with s, p-d exchange interaction between Mn2+ ions and band carriers in diluted magnetic semiconductor nanostructures.

© 2014 Optical Society of America

OCIS Codes
(160.4760) Materials : Optical properties
(160.6000) Materials : Semiconductor materials
(230.3810) Optical devices : Magneto-optic systems
(160.4236) Materials : Nanomaterials

Original Manuscript: November 15, 2013
Manuscript Accepted: December 9, 2013
Published: February 3, 2014

Andriy I. Savchuk, Ihor D. Stolyarchuk, Vitaliy V. Makoviy, and Oleksandr A. Savchuk, "Magneto-optical Faraday rotation of semiconductor nanoparticles embedded in dielectric matrices," Appl. Opt. 53, B22-B26 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Faraday, “On the magnetization of light and the illumination of magnetic lines of force,” Phil. Trans. R. Soc. London 136, 104–123 (1846).
  2. A. V. Komarov, S. M. Ryabchenko, O. V. Terletskij, I. I. Zheru, and R. D. Ivanchuk, “Magneto-optical studies and double optic-magnetic resonance of exciton band in CdTe:Mn2+,” Sov. Phys. JETP 46, 318–326 (1977).
  3. J. A. Gaj, R. R. Galazka, and M. Nawrocki, “Giant exciton Faraday rotation in Cd1-xMnxTe mixed crystals,” Solid State Commun. 25, 193–195 (1978). [CrossRef]
  4. A. V. Komarov, A. V. Los, S. M. Ryabchenko, and S. M. Romanenko, “Diluted magnetic semiconductor effects in Mn-implanted silicon carbide,” J. Appl. Phys. 109, 083936 (2011). [CrossRef]
  5. Y. K. Furdyna, “Diluted magnetic semiconductors,” J. Appl. Phys. 64, R29–R64 (1988). [CrossRef]
  6. P. I. Nikitin and A. I. Savchuk, “The Faraday effect in semimagnetic semiconductors,” Sov. Phys. Usp. 33, 974–989 (1990). [CrossRef]
  7. C. Buss, S. Huggonard-Bruyere, R. Frey, and C. Flytzanis, “Theory of Faraday rotation in semimagnetic semiconductors,” Solid State Commun. 92, 929–933 (1994). [CrossRef]
  8. S. Huggonard-Bruyere, C. Buss, F. Vouilloz, R. Frey, and C. Flytzanis, “Faraday-rotation spectra of semimagnetic semiconductors,” Phys. Rev. B 50, 2200–2207 (1994). [CrossRef]
  9. A. I. Savchuk, I. D. Stolyarchuk, S. V. Medynskiy, V. I. Fediv, Ye. O. Kandyba, A. Perrone, M. I. DeGiorgi, and P. I. Nikitin, “Technological aspects of fabrication of semimagnetic semiconductor nanocrystals,” Mater. Sci. Eng., C 15, 79–81 (2001). [CrossRef]
  10. A. I. Savchuk, V. I. Fediv, I. D. Stolyarchuk, T. A. Savchuk, and A. Perrone, “Magneto-optical Faraday effect in II-VI based semimagnetic semiconductor nanocrystals,” Phys. Status Solidi C 3, 1160–1163 (2006). [CrossRef]
  11. A. I. Savchuk, V. I. Fediv, A. G. Voloshchuk, T. A. Savchuk, Yu. Yu. Bacherikov, and A. Perrone, “New approach to synthesis of semimagnetic semiconductor nanoparticles,” Mater. Sci. Eng., C 26, 809–812 (2006). [CrossRef]
  12. A. I. Savchuk, G. Yu. Rudko, V. I. Fediv, A. G. Voloshchuk, E. G. Gule, S. A. Ivanchak, and V. V. Makoviy, “Evolution of CdS:Mn nanoparticle properties caused by pH of colloid solution and ultrasound irradiation,” Phys. Status Solidi C 7, 1510–1512 (2010). [CrossRef]
  13. V. I. Fediv, A. I. Savchuk, V. M. Frasunyak, V. V. Makoviy, and O. A. Savchuk, “Magnetic and magnetooptical properties of CdS:Mn quantum dots in PVA matrix,” J. Phys. Conf. Ser. 244, 012084 (2010). [CrossRef]
  14. D. V. Korbutyak, S. M. Kalytchuk, and I. I. Geru, “Colloidal CdTe and CdSe quantum dots: technology of preparing and optical properties,” J. Nanoelectron. Optoelectron. 4, 1–6 (2009).
  15. D. Pagliero, Y. Li, S. Fisher, and C. A. Meriles, “Approach to high-frequency, cavity-enhanced Faraday rotation in fluids,” Appl. Opt. 50, 648–654 (2011). [CrossRef]
  16. A. Arnaud, F. Silveira, E. M. Frins, A. Dubra, C. D. Perciante, and J. A. Ferrari, “Precision synchronous polarimeter with linear response for the measurement of small rotation angles,” Appl. Opt. 39, 2601–2604 (2000). [CrossRef]
  17. M.-H. Kim, V. Kurz, G. Achas, C. T. Ellis, and J. Cerne, “Measurements of the infrared complex Faraday angle in semiconductors and isolators,” J. Opt. Soc. Am. B 28, 199–207 (2011). [CrossRef]
  18. I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. van der Marel, and A. B. Kuzmenko, “Giant Faraday rotation in single- and multilayer graphene,” Nat. Phys. 7, 48–51 (2011). [CrossRef]
  19. S. K. Mishra, R. K. Srivastava, S. G. Prakash, R. S. Yadav, and A. G. Panday, “Structural, optical and photoconductivity characteristics of manganese doped cadmium sulfide nanoparticles synthesized by co-precipitation method,” J. Alloys Compd. 513, 118–124 (2012). [CrossRef]
  20. J. H. Kratzer and J. Schroeder, “Magnetooptic properties of semiconductor quantum dots in glass composites,” J. Non-Cryst. Solids 349, 299–308 (2004). [CrossRef]
  21. J. Schroeder and J. H. Kratzer, “Magneto-optic studies of rare earth containing sodium silicate glasses and semiconductor quantum dots in glass composites: nonlinear effects,” J. Non-Cryst. Solids 358, 3517–3523 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited