OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 10 — Apr. 1, 2014
  • pp: B254–B258

Moving average process underlying the holographic–optical–tweezers experiments

Jakub Ślęzak, Sławomir Drobczyński, Karina Weron, and Jan Masajada  »View Author Affiliations

Applied Optics, Vol. 53, Issue 10, pp. B254-B258 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (407 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study the statistical properties of recordings that contain time-dependent positions of a bead trapped in optical tweezers. Analysis of such a time series indicates that the commonly accepted model, i.e., the autoregressive process of first-order, is not sufficient to fit the data. We show the presence of a first-order moving average part in the dynamical model of the system. We explain the origin of this part as an influence of the high-frequency CCD camera on the measurements. We show that this influence evidently depends on the applied exposure time. The proposed autoregressive moving average model appears to reflect perfectly all statistical features of the high-frequency recording data.

© 2014 Optical Society of America

OCIS Codes
(000.3860) General : Mathematical methods in physics
(140.7010) Lasers and laser optics : Laser trapping
(170.4520) Medical optics and biotechnology : Optical confinement and manipulation
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

Original Manuscript: November 5, 2013
Revised Manuscript: February 3, 2014
Manuscript Accepted: February 9, 2014
Published: March 21, 2014

Virtual Issues
Vol. 9, Iss. 6 Virtual Journal for Biomedical Optics

Jakub Ślęzak, Sławomir Drobczyński, Karina Weron, and Jan Masajada, "Moving average process underlying the holographic–optical–tweezers experiments," Appl. Opt. 53, B254-B258 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004). [CrossRef]
  2. A. Ranaweera, Investigations with Optical Tweezers: Construction, Identification, and Control (University of California, 2004).
  3. L. P. Ghislain, N. A. Switz, and W. W. Webb, “Measurement of small forces using an optical trap,” Rev. Sci. Instrum. 65, 2762–2768 (1994). [CrossRef]
  4. M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophys J. 72, 1335–1346 (1997). [CrossRef]
  5. S. B. Smith, Y. Cui, and C. Bustamante, “Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules,” Science 271, 795–799 (1996). [CrossRef]
  6. M. E. Arsenault, Y. Sun, H. H. Baua, and Y. E. Goldman, “Using electrical and optical tweezers to facilitate studies of molecular motors,” Phys. Chem. Chem. Phys. 11, 4834–4839 (2009). [CrossRef]
  7. A. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, “Single-molecule biomechanics with optical methods,” Science 283, 1689–1695 (1999). [CrossRef]
  8. D. G. Grier, “Optical tweezers in colloid and interface science,” Curr. Opin. Colloid Interface Sci. 2, 264–270 (1997). [CrossRef]
  9. W. Coffey, Yu. Kalmykov, and J. Waldron, The Langevin Equation (World Scientific, 2005).
  10. K. Sobczyk, Stochastic Differential Equations (Kluwer Academic, 1991).
  11. D. Grier and Y. Roichman, “Holographic optical trapping,” Appl. Opt. 45, 880–887 (2006). [CrossRef]
  12. M. Polin, K. Ladavac, S.-H. Lee, Y. Roichman, and D. G. Grier, “Optimized holographic optical traps,” Opt. Express 13, 5831–5845 (2005). [CrossRef]
  13. A. Horst and N. Forde, “Power spectral analysis for optical trap stiffness calibration from high-speed camera position detection with limited bandwidth,” Opt. Express 18, 7670–7677 (2010). [CrossRef]
  14. P. Brockwell and R. Davis, Time Series: Theory and Methods (Springer-Verlag, 2006).
  15. G. Box, G. Jenkins, and G. Reinsel, Time Series Analysis: Forecasting and Control (Prentice-Hall, 1994).
  16. K. Berg-Sørensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum. 75, 594–613 (2004). [CrossRef]
  17. S. J. Orfanidis, Introduction to Signal Processing (Prentice-Hall, 1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited