OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 10 — Apr. 1, 2014
  • pp: B43–B52

Interconnection of polarization properties and coherence of optical fields

Claudia Yu. Zenkova  »View Author Affiliations


Applied Optics, Vol. 53, Issue 10, pp. B43-B52 (2014)
http://dx.doi.org/10.1364/AO.53.000B43


View Full Text Article

Enhanced HTML    Acrobat PDF (917 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Theoretical and experimental approaches to diagnosing internal spin and orbital optical flows and the corresponding optical forces caused by these flows are offered. These approaches are based on the investigation of the motion of the particles tested in the formed optical field. The dependence of the above-mentioned forces upon the size and optical properties of the particles is demonstrated. The possibility of using kinematic values defining the motion dynamics of particles of the Rayleigh light scattering mechanism to make a quantitative assessment of the degree of coherence of mutually orthogonal waves that are linearly polarized in the incidence plane is demonstrated. The feasibility of using the above mentioned approach, its shortcomings, and its advantages over the interfering method for estimating the degree of coherence are analyzed.

© 2014 Optical Society of America

OCIS Codes
(030.1670) Coherence and statistical optics : Coherent optical effects
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.5410) Instrumentation, measurement, and metrology : Polarimetry
(260.5430) Physical optics : Polarization

History
Original Manuscript: October 31, 2013
Revised Manuscript: December 20, 2013
Manuscript Accepted: December 20, 2013
Published: February 3, 2014

Citation
Claudia Yu. Zenkova, "Interconnection of polarization properties and coherence of optical fields," Appl. Opt. 53, B43-B52 (2014)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-53-10-B43


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Born and E. Wolf, Principles of Optics (Pergamon, 2005).
  2. O. V. Angelsky, P. V. Polyanskii, and C. V. Felde, “The emerging field of correlation optics,” Opt. Photon. News 23(4), 25–29 (2012). [CrossRef]
  3. A. Bekshaev, K. Bliokh, and M. Soskin, “Internal flows and energy circulation in light beams,” J. Opt. 13, 053001 (2011). [CrossRef]
  4. A. Y. Bekshaev and M. S. Soskin, “Rotational transformations and transverse energy flow in paraxial light beams: linear azimuthons,” Opt. Lett. 31, 2199–2201 (2006). [CrossRef]
  5. A. Y. Bekshaev and M. S. Soskin, “Transverse energy flows in vectorial fields of paraxial beams with singularities,” Opt. Commun. 271, 332–348 (2007). [CrossRef]
  6. A. Bekshaev and M. Vasnetsov, “Vortex flow of light: ‘spin’ and ‘orbital’ flows in a circularly polarized paraxial beam,” in Twisted Photons: Applications of Light with Orbital Angular Momentum (Wiley-VCH, 2011), pp. 13–24.
  7. A. Y. Bekshaev, “Oblique section of a paraxial light beam: criteria for azimuthal energy flow and orbital angular momentum,” J. Opt. A 11, 094003 (2009). [CrossRef]
  8. A. Y. Bekshaev, “Spin angular momentum of inhomogeneous and transversely limited light beams,” Proc. SPIE 6254, 625407 (2006).
  9. H. F. Schouten, T. D. Visse, and D. Lenstra, “Optical vortices near sub-wavelength structures,” J. Opt. B 6, S404–S409 (2004). [CrossRef]
  10. M. A. Seo, A. J. L. Adam, J. H. Kang, J. W. Lee, S. C. Jeoung, Q. H. Park, P. C. M. Planken, and D. S. Kim, “Fourier-transform terahertz near-field imaging of one-dimensional slit arrays: mapping of electric-field-, magnetic-field-, and Poynting vectors,” Opt. Express 15, 11781–11789 (2007). [CrossRef]
  11. T. Zentgraf, J. Dorfmüller, C. Rockstuhl, C. Etrich, R. Vogelgesang, K. Kern, T. Pertsch, F. Lederer, and H. Giessen, “Amplitude- and phase-resolved optical near fields of split-ring-resonator-based metamaterials,” Opt. Lett. 33, 848–850 (2008). [CrossRef]
  12. O. V. Angelsky, C. Yu. Zenkova, M. P. Gorsky, and N. V. Gorodyns’ka, “On the feasibility for estimating the degree of coherence of waves at near field,” Appl. Opt. 48, 2784–2788 (2009). [CrossRef]
  13. O. V. Angelsky, S. G. Hanson, C. Y. Zenkova, M. P. Gorsky, and N. V. Gorodyns’ka, “On polarization metrology (estimation) of the degree of coherence of optical waves,” Opt. Express 17, 15623–15634 (2009). [CrossRef]
  14. A. Y. Bekshaev, O. V. Angelsky, S. V. Sviridova, and C. Y. Zenkova, “Mechanical action of inhomogeneously polarized optical fields and detection of the internal energy flows,” Adv. Opt. Technol. 2011, 723901 (2011).
  15. A. Y. Bekshaev, O. V. Angelsky, S. G. Hanson, and C. Yu. Zenkova, “Scattering of inhomogeneous circularly polarized optical field and mechanical manifestation of the internal energy flows,” Phys. Rev. A 86, 023847 (2012). [CrossRef]
  16. O. V. Angelsky, A. Y. Bekshaev, P. P. Maksimyak, A. P. Maksimyak, I. I. Mokhun, S. G. Hanson, C. Y. Zenkova, and A. V. Tyurin, “Circular motion of particles suspended in a Gaussian beam with circular polarization validates the spin part of the internal energy flow,” Opt. Express 20, 11351–11356 (2012). [CrossRef]
  17. O. V. Angelsky, A. Y. Bekshaev, P. P. Maksimyak, A. P. Maksimyak, S. G. Hanson, and C. Y. Zenkova, “Orbital rotation without orbital angular momentum: mechanical action of the spin part of the internal energy flow in light beams,” Opt. Express 20, 3563–3571 (2012). [CrossRef]
  18. A. Y. Bekshaev, “A simple analytical model of the angular momentum transformation in strongly focused light beams,” Central Eur. J. Phys. 8, 947–960 (2010). [CrossRef]
  19. T. A. Nieminen, A. B. Stilgoe, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Angular momentum of a strongly focused Gaussian beam,” J. Opt. A 10, 115005 (2008). [CrossRef]
  20. A. Ashkin, Optical Trapping and Manipulation of Neutral Particles Using Lasers (World Scientific, 2006).
  21. C. Y. Zenkova, I. V. Soltys, and P. O. Angelsky, “The use of motion peculiarities of particles of the Rayleigh light scattering mechanism for defining the coherence properties of optical fields,” Opt. Appl. 2, 297–312 (2013).
  22. O. V. Angelsky, C. Y. Zenkova, M. P. Gorsky, I. V. Soltys, and P. O. Angelsky, “The use of new approaches to estimating the coherence properties of mutually orthogonal beams,” Open Opt. J. 7, 5–12 (2013).
  23. T. Tudor, “Polarization waves as observable phenomena,” J. Opt. Soc. Am. A 14, 2013–2020 (1997). [CrossRef]
  24. O. V. Angelsky, S. B. Yermolenko, C. Y. Zenkova, and A. O. Agelskaya, “Polarization manifestations of correlation (intrinsic coherence) of optical fields,” Appl. Opt. 47, 5492–5499 (2008).
  25. O. V. Angelsky, N. N. Dominikov, P. P. Maksimyak, and T. Tudor, “Experimental revealing of polarization waves,” Appl. Opt. 38, 3112–3117 (1999). [CrossRef]
  26. A. Apostol and A. Dogariu, “Non-Gaussian statistics of optical near-fields,” Phys. Rev. E 72, 025602 (2005). [CrossRef]
  27. O. V. Angel’skii, A. G. Ushenko, A. D. Archelyuk, S. B. Ermolenko, and D. N. Burkovets, “Structure of matrices for the transformation of laser radiation by biofractals,” Quantum Electron. 29, 1074–1077 (1999). [CrossRef]
  28. O. V. Angelsky, Y. Y. Tomka, A. G. Ushenko, Y. G. Ushenko, and Y. A. Ushenko, “Investigation of 2D Mueller matrix structure of biological tissues for pre-clinical diagnostics of their pathological states,” J. Phys. D 38, 4227–4235 (2005). [CrossRef]
  29. O. V. Angelsky, S. G. Hanson, A. P. Maksimyak, and P. P. Maksimyak, “On the feasibility for determining the amplitude zeroes in polychromatic fields,” Opt. Express 13, 4396–4405 (2005). [CrossRef]
  30. T. Setala, A. Shevchenko, M. Kaivola, and A. T. Friberg, “Degree of polarization for optical near fields,” Phys. Rev. E 66, 016615 (2002). [CrossRef]
  31. S. Savithiri, A. Pattamatta, and S. K. Das, “Scaling analysis for the investigation of slip mechanisms in nanofluids,” Nanoscale Res. Lett. 6, 471 (2011).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited