OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 10 — Apr. 1, 2014
  • pp: B53–B59

Effects of symbol modulation coding on readout fidelity of shift-multiplexed holographic digital data page storage in a photopolymerizable nanoparticle-(thiol-ene)polymer composite film

Shingo Takayama, Kohta Nagaya, Keisuke Momose, and Yasuo Tomita  »View Author Affiliations


Applied Optics, Vol. 53, Issue 10, pp. B53-B59 (2014)
http://dx.doi.org/10.1364/AO.53.000B53


View Full Text Article

Enhanced HTML    Acrobat PDF (1010 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on shift-multiplexed holographic storage of 250 digital data pages in a photopolymerizable SiO2 nanoparticle–polymer composite film being capable of step-growth thiol-ene polymerization in the green. Various two-dimensional symbol modulation codes for the digital data page format were employed to examine the dependence of the readout fidelity on modulation coding schemes. It is found that, as compared to 12 and 24 modulation codes, higher-order 59, 916, and 1325 modulation codes possessing reduced white rates and higher coding efficiencies give lower symbol-error rates of 1×103 and higher signal-to-noise ratios (>4).

© 2014 Optical Society of America

OCIS Codes
(090.2900) Holography : Optical storage materials
(090.7330) Holography : Volume gratings
(160.2900) Materials : Optical storage materials
(160.5470) Materials : Polymers
(160.4236) Materials : Nanomaterials
(160.5335) Materials : Photosensitive materials

History
Original Manuscript: November 15, 2013
Revised Manuscript: December 10, 2013
Manuscript Accepted: December 10, 2013
Published: February 3, 2014

Citation
Shingo Takayama, Kohta Nagaya, Keisuke Momose, and Yasuo Tomita, "Effects of symbol modulation coding on readout fidelity of shift-multiplexed holographic digital data page storage in a photopolymerizable nanoparticle-(thiol-ene)polymer composite film," Appl. Opt. 53, B53-B59 (2014)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-53-10-B53


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. A. Lessard and G. Manivannan, “Holographic recording materials: an overview,” Proc. SPIE 2405, 2–23 (1995). [CrossRef]
  2. L. Dhar, M. G. Schnoes, H. E. Katz, A. Hale, M. L. Schilling, and A. L. Harris, “Photopolymers for digital holographic data storage,” in Holographic Data Storage, H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds. (Springer, 2000), pp. 199.
  3. M. Haw, “The light fantastic,” Nature 422, 556–558 (2003). [CrossRef]
  4. G. P. Crawford, “Electrically switchable Bragg gratings,” Opt. Photonics News 14 (4), 54–59 (2003). [CrossRef]
  5. N. Suzuki, Y. Tomita, and T. Kojima, “Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films,” Appl. Phys. Lett. 81, 4121–4123 (2002). [CrossRef]
  6. N. Suzuki and Y. Tomita, “Silica-nanoparticle-dispersed methacrylate photopolymers with net diffraction efficiency near 100%,” Appl. Opt. 43, 2125–2129 (2004). [CrossRef]
  7. Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M. Ozawa, M. Hidaka, and K. Chikama, “Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage,” Appl. Phys. Lett. 88, 071103 (2006). [CrossRef]
  8. N. Suzuki, Y. Tomita, K. Ohmori, M. Hidaka, and K. Chikama, “Highly transparent ZrO2 nanoparticle-dispersed acrylate photopolymers for volume holographic recording,” Opt. Express 14, 12712–12719 (2006). [CrossRef]
  9. I. Naydenova, H. Sherif, S. Mintova, S. Martin, and V. Toal, “Holographic recording in nanoparticle-doped photopolymer,” Proc. SPIE 6252, 625206 (2006).
  10. O. V. Sakhno, L. M. Goldenberg, J. Stumpe, and T. N. Smironova, “Surface modified ZrO2 and TiO2 nanoparticles embedded in organic photopolymers for highly effective and UV-stable volume holograms,” Nanotechnology 18, 105704 (2007). [CrossRef]
  11. K. Chikama, K. Mastubara, S. Oyama, and Y. Tomita, “Three-dimensional confocal Raman imaging of volume holograms formed in ZrO2 nanoparticle-photopolymer composite materials,” J. Appl. Phys. 103, 113108 (2008). [CrossRef]
  12. T. Nakamura, J. Nozaki, Y. Tomita, K. Ohmori, and T. Hidaka, “Holographic recording sensitivity enhancement of ZrO2 nanoparticle-polymer composites by hydrogen donor and acceptor agents,” J. Opt. A 11, 024010 (2009). [CrossRef]
  13. K. Omura and Y. Tomita, “Photopolymerization kinetics and volume holographic recording in ZrO2 nanoparticle-polymer composites at 404 nm,” J. Appl. Phys. 107, 023107 (2010). [CrossRef]
  14. M. Moothanchery, I. Naydenova, S. Mintova, and V. Toal, “Nanozeolites doped photopolymer layers with reduced shrinkage,” Opt. Express 19, 25786–25791 (2011). [CrossRef]
  15. Y. Tomita, T. Nakamura, and A. Tago, “Improved thermal stability of volume holograms recorded in nanoparticle-polymer composite films,” Opt. Lett. 33, 1750–1752 (2008). [CrossRef]
  16. E. Hata and Y. Tomita, “Order-of-magnitude polymerization-shrinkage suppression of volume gratings recorded in nanoparticle-polymer composites,” Opt. Lett. 35, 396–398 (2010). [CrossRef]
  17. E. Hata, K. Mitsube, K. Momose, and Y. Tomita, “Holographic nanoparticle-polymer composites based on step-growth thiol-ene photopolymerization,” Opt. Mater. Express 1, 207–222 (2011). [CrossRef]
  18. E. Hata and Y. Tomita, “Stoichiometric thiol-to-ene ratio dependences of refractive index modulation and shrinkage of volume gratings recorded in photopolymerizable nanoparticle-polymer composites based on step-growth polymerization,” Opt. Mater. Express 1, 1113–1120 (2011). [CrossRef]
  19. G. Odian, Principles of Polymerization, 4th ed. (Wiley, 1994), Chap. 2, p. 110.
  20. C. E. Hoyle, T. Y. Lee, and T. Roper, “Thol-enes: chemistry of the past with promise for the future,” J. Polym. Sci. A 42, 5301–5338 (2004). [CrossRef]
  21. L. V. Natarajan, C. K. Shepherd, D. M. Brandelik, R. L. Sutherland, S. Chandra, V. P. Tondiglia, D. Tomlin, and T. J. Bunning, “Switchable holographic polymer-dispersed liquid crystal reflection gratings based on thol-ene photopolymerization,” Chem. Mater. 15, 2477–2484 (2003). [CrossRef]
  22. K. Momose, S. Takayama, E. Hata, and Y. Tomita, “Shift-multiplexed holographic digital data page storage in a nanoparticle-(thiol-ene) polymer composite film,” Opt. Lett. 37, 2250–2252 (2012). [CrossRef]
  23. S. Yasuda, Y. Osasawara, J. Minabe, K. Kawano, and K. Hayashi, “Homodyne readout on dc-removed coaxial holographic data storage,” Appl. Opt. 48, 6851–6861 (2009). [CrossRef]
  24. H. Lu, J. A. Carioscia, J. W. Stansbury, and C. N. Bowman, “Investigations of step-growth thiol-ene polymerizations for novel dental restoratives,” Dent. Mater. 21, 1129–1136 (2005).
  25. N. B. Cramer and C. N. Bowman, “Kinetics of thiol-ene and thiol-acrylate photopolymerizations with real-time Fourier transform infrared,” J. Polym. Sci. A 39, 3311–3319 (2001). [CrossRef]
  26. N. B. Cramer, T. Davies, A. K. O’Brien, and C. N. Bowman, “Mechanism and modeling of a thiol-ene photopolymerization,” Macromolecules 36, 4631–4636 (2003). [CrossRef]
  27. L. V. Natarajan, D. P. Brown, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, P. F. Lloyd, and T. J. Bunning, “Holographic polymer dispersed liquid crystal reflection gratings formed by visible light initiated thiol-ene photopolymerization,” Polymer 47, 4411–4420 (2006). [CrossRef]
  28. G. Barbastathis, M. Levene, and D. Psaltis, “Shift multiplexing with sperical reference waves,” Appl. Opt. 35, 2403–2417 (1996). [CrossRef]
  29. E. Femández, M. Ortuño, S. Gallego, A. Márquez, C. Garcia, A. Beléndez, and I. Pascual, “Multiplexed holographic data page storage on a polyvinyl alcohol/acrylamide photopolymer memory,” Appl. Opt. 47, 4448–4456 (2008). [CrossRef]
  30. T. Kume, S. Yagi, T. Imai, and M. Yamamoto, “Digital holographic memory using two-dimensional modulation code,” Jpn. J. Appl. Phys. 40, 1732–1736 (2001). [CrossRef]
  31. L. Dhar, K. Curtis, M. Tackitt, M. Schilling, S. Campbell, W. Wilson, A. Hill, C. Boyd, N. Levinos, and A. Harris, “Holographic storage of multiple high-capacity digital data pages in thick photopolymer systems,” Opt. Lett. 23, 1710–1712 (1998). [CrossRef]
  32. M. A. Ellabban, T. Woike, M. Fally, and R. A. Rupp, “Holographic scattering in the ultraviolet spectral range in iron-doped lithium niobate,” Europhys. Lett. 70, 471–477 (2005). [CrossRef]
  33. J. A. Frantz, R. K. Kostuk, and D. A. Waldman, “Model of noise-grating selectivity in volume holographic recording materials by use of Monte Carlo simulations,” J. Opt. Soc. Am. A 21, 378–387 (2004). [CrossRef]
  34. N. Suzuki and Y. Tomita, “Holographic scattering in SiO2 nanoparticle-dispersed photopolymer films,” Appl. Opt. 46, 6809–6814 (2007). [CrossRef]
  35. R. M. Shelby, J. A. Hoffnagle, G. W. Burr, C. M. Jefferson, M.-P. Bernal, H. Coufal, R. K. Grygier, H. Günther, R. M. Macfarlane, and G. T. Sincerbox, “Pixel-matched holographic data storage with megabit pages,” Opt. Lett. 22, 1509–1511 (1997). [CrossRef]
  36. K. Tanaka, M. Hara, K. Tokuyama, K. Hirooka, K. Ishioka, A. Fukumoto, and K. Watanabe, “Improved performance in coaxial holographic data recording,” Opt. Express 15, 16196–16209 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited