OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 10 — Apr. 1, 2014
  • pp: B60–B73

Generation of double-charged optical vortices on the basis of electro-optic Kerr effect

Yurij Vasylkiv, Ihor Skab, and Rostyslav Vlokh  »View Author Affiliations


Applied Optics, Vol. 53, Issue 10, pp. B60-B73 (2014)
http://dx.doi.org/10.1364/AO.53.000B60


View Full Text Article

Enhanced HTML    Acrobat PDF (1046 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We show that double-charged optical vortices can be generated with the help of Kerr electro-optic effect in either single crystals or isotropic media, including gaseous and liquid ones. We analyze possibilities for the vortex generation via the Kerr effect for different point groups of symmetry and formulate the appropriate conditions. We prove that the crystals, textures, and the isotropic media most suitable for the generation of double-charged optical vortices should belong to the symmetry groups 622, 6mm, 6/mmm, 6, 6/m, /m, , 2, mm, /mmm, //mmm, and /2.

© 2014 Optical Society of America

OCIS Codes
(190.3270) Nonlinear optics : Kerr effect
(230.2090) Optical devices : Electro-optical devices
(260.1180) Physical optics : Crystal optics
(260.1440) Physical optics : Birefringence
(260.6042) Physical optics : Singular optics

History
Original Manuscript: November 12, 2013
Revised Manuscript: December 9, 2013
Manuscript Accepted: December 9, 2013
Published: February 3, 2014

Citation
Yurij Vasylkiv, Ihor Skab, and Rostyslav Vlokh, "Generation of double-charged optical vortices on the basis of electro-optic Kerr effect," Appl. Opt. 53, B60-B73 (2014)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-53-10-B60


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. F. Nay and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. A. 336, 165–190 (1974). [CrossRef]
  2. L. Allen, M. Beijersbergen, R. Spreeuw, and J. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992). [CrossRef]
  3. D. P. DiVincenzo, “Quantum computation,” Science 270, 255–261 (1995). [CrossRef]
  4. S. Groblacher, T. Jennewein, A. Viziri, G. Weihs, and A. Zeillinger, “Experimental quantum cryptography with qutrits,” New J. Phys. 8, 75 (2006). [CrossRef]
  5. G. Molina-Terriza, A. Vaziri, J. Rehácek, Z. Hradil, and A. Zeilinger, “Triggered qutrits for quantum communication protocols,” Phys. Rev. Lett. 92, 167903 (2004). [CrossRef]
  6. D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997). [CrossRef]
  7. D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003). [CrossRef]
  8. M. W. Beijersbergen, “Helical-wavefront laser beams produced with a spiral phase plate,” Opt. Commun. 112, 321–327 (1994). [CrossRef]
  9. N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, “Generation of optical phase singularities by computer-generated holograms,” Opt. Lett. 17, 221–223 (1992). [CrossRef]
  10. Ya. Izdebskaya, V. Shvedov, and A. Volyar, “Focusing of wedge-generated higher-order optical vortices,” Opt. Lett. 30, 2530–2532 (2005). [CrossRef]
  11. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003). [CrossRef]
  12. V. G. Shvedov, “Nonparaxial singular beams inside the focal region of a high numerical-aperture lens,” Ukr. J. Phys. Opt. 12, 109–116 (2011). [CrossRef]
  13. G. Molina-Terriza, J. P. Torres, and L. Torner, “Management of the angular momentum of light: preparation of photons in multidimensional vector states of angular momentum,” Phys. Rev. Lett. 88, 013601 (2001). [CrossRef]
  14. J. Qing Lin, “Heralded generation of symmetric and asymmetric entangled qudits with weak cross-Kerr nonlinearity,” J. Opt. Soc. Am. B 30, 576–581 (2013). [CrossRef]
  15. L. Marrucci, E. Karimi, S. Slussarenko, B. Piccirillo, E. Santamato, E. Nagali, and F. Sciarrino, “Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications,” J. Opt. 13, 064001 (2011). [CrossRef]
  16. E. Karimi, B. Piccirillo, E. Nagali, L. Marrucci, and E. Santamato, “Efficient generation and sorting of orbital angular momentum eigenmodes of light by thermally tuned q-plates,” Appl. Phys. Lett. 94, 231124 (2009). [CrossRef]
  17. B. Piccirillo, V. D’Ambrosio, S. Slussarenko, L. Marrucci, and E. Santamato, “Photon spin-to-orbital angular momentum conversion via an electrically tunable q-plate,” Appl. Phys. Lett. 97, 241104 (2010). [CrossRef]
  18. R. Barboza, U. Bortolozzo, G. Assanto, E. Vidal-Henriquez, M. G. Clerc, and S. Residori, “Vortex induction via anisotropy stabilized light-matter interaction,” Phys. Rev. Lett. 109, 143901 (2012). [CrossRef]
  19. M. El Ketara and E. Brasselet, “Self-induced nonlinear spin–orbit interaction of light in liquid crystals,” Opt. Lett. 37, 602–604 (2012). [CrossRef]
  20. S. Mosca, B. Canuel, E. Karimi, B. Piccirillo, L. Marrucci, R. De Rosa, E. Genin, L. Milano, and E. Santamato, “Photon self-induced spin-to-orbital conversion in a terbium-gallium-garnet crystal at high laser power,” Phys. Rev. A 82, 043806 (2010). [CrossRef]
  21. J. M. Amjad, H. R. Khalesifard, S. Slussarenko, E. Karimi, L. Marrucci, and E. Santamato, “Laser-induced radial birefringence and spin-to-orbital optical angular momentum conversion in silver-doped glasses,” Appl. Phys. Lett. 99, 011113 (2011). [CrossRef]
  22. I. Skab, Y. Vasylkiv, B. Zapeka, V. Savaryn, and R. Vlokh, “Appearance of singularities of optical fields under torsion of crystals containing threefold symmetry axes,” J. Opt. Soc. Am. A 28, 1331–1340 (2011). [CrossRef]
  23. I. Skab, Y. Vasylkiv, V. Savaryn, and R. Vlokh, “Optical anisotropy induced by torsion stresses in LiNbO3 crystals: appearance of an optical vortex,” J. Opt. Soc. Am. A 28, 633–640 (2011). [CrossRef]
  24. I. Skab, Y. Vasylkiv, and R. Vlokh, “Induction of optical vortex in the crystals subjected to bending stresses,” Appl. Opt. 51, 5797–5805 (2012). [CrossRef]
  25. Y. Vasylkiv, O. Krupych, I. Skab, and R. Vlokh, “On the spin-to-orbit momentum conversion operated by electric field in optically active Bi12GeO20 crystals,” Ukr. J. Phys. Opt. 12, 171–179 (2011). [CrossRef]
  26. I. Skab, Y. Vasylkiv, I. Smaga, and R. Vlokh, “Spin-to-orbital momentum conversion via electro-optic Pockels effect in crystals,” Phys. Rev. A 84, 043815 (2011). [CrossRef]
  27. L. Chen and W. She, “Electro-optically forbidden or enhanced spin-to-orbital angular momentum conversion in a focused light beam,” Opt. Lett. 33, 696–698 (2008). [CrossRef]
  28. O. G. Vlokh, “Deformation of optical indicatrices at quadratic and spontaneous electrooptic effect in crystals,” Ukr. Fiz. Zhurn. 10, 1101–1118 (1965).
  29. R. E. Newnham, Properties of Materials: Anisotropy, Symmetry, Structure (Oxford University, 2005).
  30. D. R. Lide, CRC Handbook of Chemistry and Physics, 90th ed. (Taylor & Francis, 2010).
  31. L. Marrucci, “Generation of helical modes of light by spin-to-orbital angular momentum conversion in inhomogeneous liquid crystals,” Mol. Cryst. Liq. Cryst. 488, 148–162 (2008).
  32. Y. Fujii and T. Sakudo, “Interferometric determination of the quadratic electro-optic coefficients in SrTiO3 crystal,” J. Appl. Phys. 41, 4118–4120 (1970). [CrossRef]
  33. A. V. Volyar, “Do optical quarks exist in the free space? A scalar treatment,” Ukr. J. Phys. Opt. 14, 31–43 (2013). [CrossRef]
  34. T. Fadeyeva, C. Alexeyev, A. Rubass, and A. Volyar, “Vector erf-Gaussian beams: fractional optical vortices and asymmetric TE and TM modes,” Opt. Lett. 37, 1397–1399 (2012). [CrossRef]
  35. I. V. Basistiy, V. A. Pas’ko, V. V. Slyusar, M. S. Soskin, and M. V. Vasnetsov, “Synthesis and analysis of optical vortices with fractional topological charges,” J. Opt. A 6, S166–S169 (2004). [CrossRef]
  36. M. V. Berry, “Optical vortices evolving from helicoidal integer and fractional phase steps,” J. Opt. A 6, 259–268 (2004). [CrossRef]
  37. S. Chandrasekhar, Liquid Crystals, 2nd ed. (Cambridge University, 1992).
  38. M. V. Berry and J. H. Hannay, “Umbilic points on Gaussian random surfaces,” J. Phys. A 10, 1809–1821 (1977). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: AVI (435 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited