OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 11 — Apr. 10, 2014
  • pp: 2405–2415

Optical role of randomness for structured surfaces

Villads Egede Johansen  »View Author Affiliations


Applied Optics, Vol. 53, Issue 11, pp. 2405-2415 (2014)
http://dx.doi.org/10.1364/AO.53.002405


View Full Text Article

Enhanced HTML    Acrobat PDF (1376 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

It has long been known that random height variations of a repeated nanoscale structure can give rise to smooth angular color variations instead of the well-known diffraction pattern experienced if no randomization is present. However, until now there have been few publications trying to explain this and similar phenomena taking outset in electromagnetic theory. This paper presents a method for analyzing far-field reflection from a surface constructed by translated instances of a given structure. Several examples of the effect of random translations are given.

© 2014 Optical Society of America

OCIS Codes
(030.1670) Coherence and statistical optics : Coherent optical effects
(050.1960) Diffraction and gratings : Diffraction theory
(240.6700) Optics at surfaces : Surfaces
(290.0290) Scattering : Scattering
(330.1690) Vision, color, and visual optics : Color
(330.7326) Vision, color, and visual optics : Visual optics, modeling

ToC Category:
Vision, Color, and Visual Optics

History
Original Manuscript: January 2, 2014
Revised Manuscript: January 2, 2014
Manuscript Accepted: February 26, 2014
Published: April 7, 2014

Virtual Issues
Vol. 9, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Villads Egede Johansen, "Optical role of randomness for structured surfaces," Appl. Opt. 53, 2405-2415 (2014)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-53-11-2405


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Hooke, Micrographia, http://www.gutenberg.org (1665).
  2. A. R. Parker, “515 million years of structural colour,” J. Opt. A 2, R15–R28 (2000). [CrossRef]
  3. P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. R. Soc. B 266, 1403–1411 (1999). [CrossRef]
  4. N. Okada, D. Zhu, D. Cai, J. B. Cole, M. Kambe, and S. Kinoshita, “Rendering Morpho butterflies based on high accuracy nano-optical simulation,” J. Opt. 42, 25–36 (2013). [CrossRef]
  5. C. W. Mason, “Structural colors in insects. II,” J. Phys. Chem., 31, 321–354 (1927).
  6. W. Lippert and K. Gentil, “Über Lamellare Feinstrukturen bei den Schillerschuppen der Schmetterlinge vom Urania- und Morpho-typ Z,” Morph. Ökol. Tiere 48, 115–122 (1959).
  7. A. R. Parker, T. Lenau, and A. Saito, “Biomimetics of optical nanostructures,” in Biomimetics in Photonics (CRC Press, 2012), pp. 55–115.
  8. S. Kinoshita, D. Zhu, and A. Saito, “Modeling and simulation of structural colors,” in Biomimetics in Photonics (CRC Press, 2012), pp. 191–242.
  9. P. Licinio, “Diffraction by disordered gratings and the DebyeWaller effect,” Am. J. Phys. 67, 1013–1016 (1999). [CrossRef]
  10. J. M. Rico-García and L. M. Sanchez-Brea, “Binary gratings with random heights,” Appl. Opt. 48, 3062–3069 (2009). [CrossRef]
  11. T. Buß, J. Teisseire, and S. Mazoyer, “Controlled angular redirection of light via nanoimprinted disordered gratings,” Appl. Opt. 52, 709–716 (2013). [CrossRef]
  12. F. Pratesi, M. Burresi, F. Riboli, K. Vynck, and D. S. Wiersma, “Disordered photonic structures for light harvesting in solar cells,” Opt. Express 21, A460–A468 (2013). [CrossRef]
  13. R. T. Lee and G. S. Smith, “Detailed electromagnetic simulation for the structural color of butterfly wings,” Appl. Opt. 48, 4177–4190 (2009). [CrossRef]
  14. A. Saito, Y. Miyamura, Y. Ishikawa, J. Murase, M. Akai-Kasaya, and Y. Kuwahara, “Reproduction, mass-production and control of the Morpho-butterfly’s blue,” Ad. Fabric. Technol. Micro/Nano Optics and Photonics II 7205, 720506 (2009).
  15. A. Saito, M. Yonezawa, J. Murase, S. Juodkazis, V. Mizeikis, M. Akai-Kasaya, and Y. Kuwahara, “Numerical analysis on the optical role of nano-randomness on the Morpho butterfly’s scale,” J. Nanosci. Nanotech. 11, 2785–2792 (2011).
  16. M. A. Steindorfer and V. Schmidt, “Detailed simulation of structural color generation inspired by the Morpho butterfly,” Opt. Express 20, 21485–21494 (2012). [CrossRef]
  17. C. A. Balanis, Advanced Engineering Electromagnetics, 2nd ed. (Wiley, 2012).
  18. M. Zhou, S. B. Sørensen, E. Jørgensen, P. Meincke, O. S. Kim, and O. Breinbjerg, “An accurate technique for calculation of radiation from printed reflect arrays,” IEEE Antennas and Wireless Propagation Lett. 10, 1081–1084 (2011).
  19. D. Zhu, S. Kinoshita, D. Cai, and J. Cole, “Investigation of structural colors in Morpho butterflies using the nonstandard-finite-difference time-domain method: effects of alternately stacked shelves and ridge density,” Phys. Rev. E 80, 051924 (2009). [CrossRef]
  20. P. Dutré, K. Bala, and P. Bekaert, Advanced Global Illumination (A K Peters, 2006).
  21. J. E. Harvey, C. L. Vernold, A. Krywonos, and P. L. Thompson, “Diffracted radiance: a fundamental quantity in nonparaxial scalar diffraction theory,” Appl. Opt. 38, 6469–6481 (1999). [CrossRef]
  22. T. Antonakakis, F. Bada, A. Belkhir, K. Cherednichenko, S. Cooper, R. Craster, G. Demesy, J. DeSanto, G. Granet, B. Gralak, S. Guenneau, D. Maystre, A. Nicolet, B. Stout, F. Zolla, and B. Vial, Gratings: Theory and Numeric Applications, 1st ed. (Presses Eniversitaires de Provence, 2012).
  23. R. N. Bracewell, The Fourier Transform and its Applications, 3rd ed. (McGraw Hill, 2000).
  24. S. Kinoshita, S. Yoshioka, Y. Fujii, and N. Okamoto, “Photophysics of structural color in the Morpho butterflies,” Forma, 17, 103–121 (2002).
  25. R. T. Lee, “A novel method for incorporating periodic boundaries into the FDTD method and the application to the study of structural color of insects,” Ph.D. thesis (Georgia Institute of Technology, 2009).
  26. R. S. Berns, F. W. Billmeyer, and M. Saltzman, Billmeyer and Saltzman's Principles of Color Technology (Wiley-Interscience Publication, 2000).
  27. J. Andkjær, V. E. Johansen, K. S. Friis, and O. Sigmund, “Inverse design of nanostructured surfaces for color effects,” J. Opt. Soc. Am. B 31, 164–174 (2014). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited