Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Electromagnetic plasmon propagation and coupling through gold nanoring heptamers: a route to design optimized telecommunication photonic nanostructures

Not Accessible

Your library or personal account may give you access

Abstract

In this work, a configuration of bulk gold nanorings with certain geometrical sizes has been utilized for designing efficient photonic subwavelength nanostructures. We verify that adjacent heptamers based on gold nanorings are able to couple and transport magnetic plasmon resonance along a nanoring array in chrysene and triphenylene molecule orientations. This magnetic resonance transmission is caused by an antiphase circular current through the heptamer arrays. An orientation model of nanoring heptamers helps us to provide efficient optical structures with a remarkable decay length and a trivial ratio of destructive interferences. Exploiting the robust magnetic plasmon resonance coupling effect between heptamers arrays, we would be able to propose a practical plasmonic waveguide, a Y-shaped optical power divider (splitter), and an ON/OFF router that is operating based on destructive and constructive interferences. The quality of power splitting has been discussed comprehensively and also, the effect of undesirable occasions on the functioning performance of the proposed router has been investigated numerically. Ultimately, we verify that employing heptamers based on gold nanorings leads us to propose efficient plasmonic nanostructures and devices that are able to work in the telecommunication spectrum.

© 2014 Optical Society of America

Full Article  |  PDF Article
More Like This
Magnetic-based Fano resonance of hybrid silicon-gold nanocavities in the near-infrared region

Xuting Ci, Botao Wu, Yan Liu, Gengxu Chen, E Wu, and Heping Zeng
Opt. Express 22(20) 23749-23758 (2014)

Constructive-interference-enhanced Fano resonance of silver plasmonic heptamers with a substrate mirror: a numerical study

Xupeng Zhu, Huimin Shi, Shi Zhang, Quanhui Liu, and Huigao Duan
Opt. Express 25(9) 9938-9946 (2017)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.