OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 2 — Jan. 10, 2014
  • pp: 189–194

Controllable color display induced by excitation-intensity-dependent competition between second and third harmonic generation in ZnO nanorods

Jun Dai, Mao-Hui Yuan, Jian-Hua Zeng, Qiao-Feng Dai, Sheng Lan, Chai Xiao, and Shao-Long Tie  »View Author Affiliations

Applied Optics, Vol. 53, Issue 2, pp. 189-194 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (812 KB) | SpotlightSpotlight on Optics Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigated the second and third harmonic generation (SHG and THG) in ZnO nanorods (NRs) by using a femtosecond laser (optical parametric amplifier with tunable wavelengths) with a long excitation wavelength of 1350 nm and a low repetition rate of 1 kHz. The damage threshold for ZnO NRs in this case was sufficiently large, enabling us to observe the competition between SHG and THG. The transition from red to blue emission and the mixing of red and blue light with different ratios were successfully demonstrated by simply varying excitation intensity, implying the potential applications of ZnO NRs in all-optical display.

© 2014 Optical Society of America

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.2620) Nonlinear optics : Harmonic generation and mixing
(260.3800) Physical optics : Luminescence

ToC Category:
Nonlinear Optics

Original Manuscript: September 27, 2013
Revised Manuscript: November 29, 2013
Manuscript Accepted: December 2, 2013
Published: January 6, 2014

Virtual Issues
February 24, 2014 Spotlight on Optics

Jun Dai, Mao-Hui Yuan, Jian-Hua Zeng, Qiao-Feng Dai, Sheng Lan, Chai Xiao, and Shao-Long Tie, "Controllable color display induced by excitation-intensity-dependent competition between second and third harmonic generation in ZnO nanorods," Appl. Opt. 53, 189-194 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen, and T. Goto, “Optically pumped lasing of ZnO at room temperature,” Appl. Phys. Lett. 70, 2230–2232 (1997). [CrossRef]
  2. A. B. Djurišić and Y. H. Leung, “Optical properties of ZnO nanostructures,” Small 2, 944–961 (2006). [CrossRef]
  3. O. Mondal and M. Pal, “Strong and unusual violet-blue emission in ring shaped ZnO nanocrystals,” J. Mater. Chem. 21, 18354–18358 (2011). [CrossRef]
  4. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292, 1897–1899 (2001). [CrossRef]
  5. B. Jin and D. Wang, “Strong violet emission from zinc oxide dumbbell-like microrods and nanowires,” J. Lumin. 132, 1879–1884 (2012). [CrossRef]
  6. J. L. Zeng, X. W. Zhang, J. Z. Yie Tan, J. C. Bian, Z. Li, Z.-D. Chen, R.-Q. Peng, H.-Y. He, J. Wang, and F. Yang, “Full-color photoluminescence of ZnO nanorod arrays based on annealing processes,” J. Lumin. 135, 201–205 (2013). [CrossRef]
  7. H. B. Zeng, G. T. Duan, Y. Li, S. K. Yang, X. X. Xu, and W. P. Cai, “Blue luminescence of ZnO nanoparticles based on non-equilibrium processes: defect origins and emission controls,” Adv. Funct. Mater. 20, 561–572 (2010). [CrossRef]
  8. S. W. Liu, H. J. Zhou, A. Ricca, R. Tian, and M. Xiao, “Far-field second-harmonic fingerprint of twinning in single ZnO rods,” Phys. Rev. B 77, 113311 (2008). [CrossRef]
  9. S. W. Chan, R. Barille, J. M. Nunzi, K. H. Tam, Y. H. Leung, W. K. Chan, and A. B. Djurišić, “Second harmonic generation in zinc oxide nanorods,” Appl. Phys. B 84, 351–355 (2006).
  10. S. K. Das, M. Bock, C. O’Neill, R. Grunwald, K. M. Lee, L. Hwang Woon, S. Lee, and F. Rotermund, “Efficient second harmonic generation in ZnO nanorod arrays with broadband ultrashort pulses,” Appl. Phys. Lett. 93, 181112 (2008). [CrossRef]
  11. J. Jang, S. Park, N. Frazer, J. Ketterson, S. Lee, B. Roy, and J. Cho, “Strong P-band emission and third harmonic generation from ZnO nanorods,” Solid State Commun. 152, 1241–1243 (2012). [CrossRef]
  12. H. Lee, K. Lee, S. Lee, K. Koh, J.-Y. Park, K. Kim, and F. Rotermund, “Ultrafast third-order optical nonlinearities of vertically aligned ZnO nanorods,” Chem. Phys. Lett. 447, 86–90 (2007). [CrossRef]
  13. S. K. Das, M. Biswas, D. Byrne, M. Bock, E. McGlynn, M. Breusing, and R. Grunwald, “Multiphoton-absorption induced ultraviolet luminescence of ZnO nanorods using low-energy femtosecond pulses,” J. Appl. Phys. 108, 043107 (2010). [CrossRef]
  14. C. F. Zhang, Z. Dong, K. Liu, Y. Yan, S. Qian, and H. Deng, “Multiphoton absorption pumped ultraviolet stimulated emission from ZnO microtubes,” Appl. Phys. Lett. 91, 142109 (2007). [CrossRef]
  15. C. F. Zhang, F. Zhang, S. Qian, N. Kumar, J.-I. Hahm, and J. Xu, “Multiphoton absorption induced amplified spontaneous emission from biocatalyst-synthesized ZnO nanorods,” Appl. Phys. Lett. 92, 233116 (2008). [CrossRef]
  16. G. Wang, G. K. L. Wong, and J. B. Ketterson, “Redetermination of second-order susceptibility of zinc oxide single crystals,” Appl. Opt. 40, 5436–5438 (2001). [CrossRef]
  17. M. Larciprete, D. Haertle, A. Belardini, M. Bertolotti, F. Sarto, and P. Günter, “Characterization of second and third order optical nonlinearities of ZnO sputtered films,” Appl. Phys. B 82, 431–437 (2006).
  18. G. Wang, G. Kiehne, G. Wong, J. Ketterson, X. Liu, and R. Chang, “Large second harmonic response in ZnO thin films,” Appl. Phys. Lett. 80, 401–403 (2002). [CrossRef]
  19. J. C. Johnson, H. Yan, R. D. Schaller, P. B. Petersen, P. Yang, and R. J. Saykally, “Near-field imaging of nonlinear optical mixing in single zinc oxide nanowires,” Nano Lett. 2, 279–283 (2002). [CrossRef]
  20. Z. K. Zhou, Z. H. Hao, Z. W. Mei, X. G. Wen, and S. H. Yang, “Nonlinear photoluminescence from ZnO nanobelts,” Chin. Phys. Lett. 26, 024201 (2009). [CrossRef]
  21. U. Neumann, R. Grunwald, U. Griebner, G. Steinmeyer, and W. Seeber, “Second-harmonic efficiency of ZnO nanolayers,” Appl. Phys. Lett. 84, 170–172 (2004). [CrossRef]
  22. E. V. Dorote, ed., Trends in Nanotechnology Research (Nova Science, 2004).
  23. R. Prasanth, L. K. van Vugt, D. A. M. Vanmaekelbergh, and H. C. Gerritsen, “Resonance enhancement of optical second harmonic generation in a ZnO nanowire,” Appl. Phys. Lett. 88, 181501 (2006). [CrossRef]
  24. H. Deng, G. Li, Q. Dai, M. Ouyang, S. Lan, V. A. Trofimov, and T. M. Lysak, “Size dependent competition between second harmonic generation and two-photon luminescence observed in gold nanoparticles,” Nanotechnology 24, 075201 (2013). [CrossRef]
  25. J. Dai, J. H. Zeng, S. Lan, X. Wan, and S. L. Tie, “Competition between second harmonic generation and two-photon-induced luminescence in single, double and multiple ZnO nanorods,” Opt. Express 21, 10025–10038 (2013). [CrossRef]
  26. B. Kulyk, Z. Essaidi, J. Luc, Z. Sofiani, G. Boudebs, B. Sahraoui, V. Kapustianyk, and B. Turko, “Second and third order nonlinear optical properties of microrod ZnO films deposited on sapphire substrates by thermal oxidation of metallic zinc,” J. Appl. Phys. 102, 113113 (2007). [CrossRef]
  27. V. Narayanan and R. Thareja, “Harmonic generation in ZnO nanocrystalline laser deposited thin films,” Opt. Commun. 260, 170–174 (2006). [CrossRef]
  28. T. Y. Tsang, “Optical third-harmonic generation at interfaces,” Phys. Rev. A 52, 4116–4125 (1995). [CrossRef]
  29. J. Dai, Z. Fu, S. Lan, X. Wan, S. Tie, V. A. Trofimov, and T. M. Lysak, “Modified threshold of two-photon-pumped random lasing of ZnO nanorods by femtosecond laser ablation,” J. Appl. Phys. 112, 063101 (2012). [CrossRef]
  30. Z. C. Fu, J. Dai, T. Li, H. Y. Liu, Q. F. Dai, L. J. Wu, S. Lan, S. L. Tie, X. Wan, A. V. Gopal, V. A. Trofimov, and T. M. Lysak, “Femtosecond laser ablation of ZnO nanorods for two-photon-pumped random lasing and optical data storage,” Appl. Phys. B 108, 61–66 (2012). [CrossRef]
  31. C. Liu, B. Zhang, N. Binh, and Y. Segawa, “Third-harmonic generation from ZnO films deposited by MOCVD,” Appl. Phys. B 79, 83–86 (2004). [CrossRef]
  32. O. Mücke, T. Tritschler, M. Wegener, U. Morgner, and F. Kärtner, “Determining the carrier-envelope offset frequency of 5-fs pulses with extreme nonlinear optics in ZnO,” Opt. Lett. 27, 2127–2129 (2002). [CrossRef]
  33. J. Zhang, L. Wang, S. Krishna, M. Sheik-Bahae, and S. Brueck, “Saturation of the second harmonic generation from GaAs-filled metallic hole arrays by nonlinear absorption,” Phys. Rev. B 83, 165438 (2011). [CrossRef]
  34. M. Nayfeh, O. Akcakir, G. Belomoin, N. Barry, J. Therrien, and E. Gratton, “Second harmonic generation in microcrystallite films of ultrasmall Si nanoparticles,” Appl. Phys. Lett. 77, 4086–4088 (2000). [CrossRef]
  35. C. Q. Li, C. Y. Zhang, Z. S. Huang, X. F. Li, Q. F. Dai, S. Lan, and S. Tie, “Assembling of silicon nanoflowers with significantly enhanced second harmonic generation using silicon nanospheres fabricated by femtosecond laser ablation,” J. Phys. Chem. C 117, 24625–24631 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited