OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 20 — Jul. 10, 2014
  • pp: 4493–4502

On-chip copper–dielectric interference filters for manufacturing of ambient light and proximity CMOS sensors

Laurent Frey, Lilian Masarotto, Patrick Gros D’Aillon, Catherine Pellé, Marilyn Armand, Michel Marty, Clémence Jamin-Mornet, Sandrine Lhostis, and Olivier Le Briz  »View Author Affiliations


Applied Optics, Vol. 53, Issue 20, pp. 4493-4502 (2014)
http://dx.doi.org/10.1364/AO.53.004493


View Full Text Article

Enhanced HTML    Acrobat PDF (858 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Filter technologies implemented on CMOS image sensors for spectrally selective applications often use a combination of on-chip organic resists and an external substrate with multilayer dielectric coatings. The photopic-like and near-infrared bandpass filtering functions respectively required by ambient light sensing and user proximity detection through time-of-flight can be fully integrated on chip with multilayer metal–dielectric filters. Copper, silicon nitride, and silicon oxide are the materials selected for a technological proof-of-concept on functional wafers, due to their immediate availability in front-end semiconductor fabs. Filter optical designs are optimized with respect to specific performance criteria, and the robustness of the designs regarding process errors are evaluated for industrialization purposes.

© 2014 Optical Society of America

OCIS Codes
(160.3900) Materials : Metals
(230.4170) Optical devices : Multilayers
(310.1860) Thin films : Deposition and fabrication
(310.4165) Thin films : Multilayer design

ToC Category:
Thin Films

History
Original Manuscript: March 18, 2014
Revised Manuscript: May 16, 2014
Manuscript Accepted: May 29, 2014
Published: July 8, 2014

Citation
Laurent Frey, Lilian Masarotto, Patrick Gros D’Aillon, Catherine Pellé, Marilyn Armand, Michel Marty, Clémence Jamin-Mornet, Sandrine Lhostis, and Olivier Le Briz, "On-chip copper–dielectric interference filters for manufacturing of ambient light and proximity CMOS sensors," Appl. Opt. 53, 4493-4502 (2014)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-53-20-4493


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. A. G. Webster, L. A. Grant, and R. K. Henderson, “A high-performance single-photon avalanche diode in 130-nm CMOS imaging technology,” IEEE Electron Device Lett. 33, 1589–1591 (2012). [CrossRef]
  2. S. Cova, M. Ghioni, M. A. Itzler, J. C. Bienfang, and A. Restelli, “Semi-conductor based detectors,” Exp. Methods Phys. Sci. 45, 83–146 (2013). [CrossRef]
  3. S. Kawada, S. Sakai, N. Akahane, R. Kuroda, and S. Sugawa, “A wide dynamic range checkered-color CMOS image sensor with IR-cut RGB and visible-to-near-IR pixels,” in Proceedings of IEEE Sensors Conference (IEEE, 2009), pp. 1648–1651.
  4. S. Koyama, Y. Inaba, M. Kasano, and T. Murata, “A day and night vision MOS imager with robust photonic-crystal-based RGB-and-IR,” IEEE Trans. Electron Devices 55, 754–759 (2008). [CrossRef]
  5. Y. T. Yoon and S. S. Lee, “Transmission type color filter incorporating a silver film etalon,” Opt. Express 18, 5344–5349 (2010). [CrossRef]
  6. L. Frey, P. Parrein, J. Raby, C. Pellé, D. Hérault, M. Marty, and J. Michailos, “Color filters including infrared cut-off integrated on CMOS image sensors,” Opt. Express 19, 13073–13080 (2011). [CrossRef]
  7. H. A. Macleod, Thin-Film Optical Filters III (Institute of Physics, 2001).
  8. J. A. Dobrowolski, “Comparison of the Fourier-transform and flip-flop thin-film synthesis methods,” Appl. Opt. 25, 1966–1972 (1986). [CrossRef]
  9. A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, and M. A. Kokarev, “Key role of the coating total optical thickness in solving design problems,” Proc. SPIE 5250, 312–321 (2004). [CrossRef]
  10. D65 illuminant, http://www.cie.co.at/publ/abst/datatables15_2004/std65.txt .
  11. A. V. Tikhonravov and M. K. Trubetskov, OptiLayer Thin Film Software, http://www.optilayer.com .
  12. J. L. Regolini, D. Benoit, and P. Morin, “Passivation issues in active pixel CMOS image sensors,” Microelectron. Reliab. 47, 739–742 (2007).
  13. P. Verly, “Design of a robust thin-film interference filter for erbium-doped fiber amplifier gain equalization,” Appl. Opt. 41, 3092–3096 (2002). [CrossRef]
  14. Y. L. Cheng, T. J. Chiu, B. J. Wei, H. J. Wang, J. Wu, and Y. L. Wang, “Effect of copper barrier dielectric deposition process on characterization of copper interconnect,” J. Vac. Sci. Technol. B 28, 567–572 (2010). [CrossRef]
  15. C. Boehme and G. Lucovsky, “Dissociation reactions of hydrogen in remote plasma-enhanced chemical vapor-deposition silicon nitride,” J. Vac. Sci. Technol. A 19, 2622–2628 (2001). [CrossRef]
  16. D. Benoit, P. Morin, and J. Regolini, “Determination of silicon nitride film chemical composition to study hydrogen desorption mechanisms,” Thin Solid Films 519, 6550–6553 (2011). [CrossRef]
  17. S. C. Mao, S. H. Tao, Y. L. Xu, X. W. Sun, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Low propagation loss SiN optical waveguide prepared by optimal low-hydrogen module,” Opt. Express 16, 20809–20816 (2008). [CrossRef]
  18. F. Karouta, K. Vora, J. Tian, and C. Jagadish, “Structural, compositional and optical properties of PECVD silicon nitride layers,” J. Phys. D 45, 445301 (2012). [CrossRef]
  19. E. R. Fossum and D. B. Hondongwa, “A review of the pinned photodiode for CCD and CMOS image sensors,” IEEE J. Electron Devices Soc. 2, 33–43 (2014).
  20. M. Cohen, F. Roy, D. Herault, Y. Cazaux, A. Gandolfi, J. P. Reynard, C. Cowache, E. Bruno, T. Girault, J. Vaillant, F. Barbier, Y. Sanchez, N. Hotellier, O. LeBorgne, C. Augier, A. Inard, T. Jagueneau, C. Zinck, J. Michailos, and E. Mazaleyrat, “Fully optimized Cu based process with dedicated cavity etch for 1.75  μm and 1.45  μm,” in Proceedings of the International Electron Devices Meeting (IEEE, 2006), paper 4154411.
  21. C. Mornet, J. Vaillant, T. Decroux, N. Virollet, D. Herault, and I. Schanen, “An image quality evaluation tool simulating image sensors including quantum efficiency off-axis effect,” Proc. SPIE 7876, 78760M (2011). [CrossRef]
  22. L. Frey, P. Parrein, L. Virot, C. Pellé, and J. Raby, “Thin film characterization for modeling and optimization of silver-dielectric color filters,” Appl. Opt. 53, 1663–1673 (2014). [CrossRef]
  23. B. Badoil, F. Lemarchand, M. Cathelinaud, and M. Lequime, “Manufacturing of an absorbing filter controlled by a broadband optical monitoring,” Opt. Express 16, 12008–12017 (2008). [CrossRef]
  24. C. C. Lee, K. Wu, and M. Y. Ho, “Reflection coefficient monitoring for optical interference coating depositions,” Opt. Lett. 38, 1325–1327 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited