OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 20 — Jul. 10, 2014
  • pp: 4532–4538

Holographic radius test plates for spherical surfaces with large radius of curvature

Quandou Wang, Ulf Griesmann, and Johannes A. Soons  »View Author Affiliations


Applied Optics, Vol. 53, Issue 20, pp. 4532-4538 (2014)
http://dx.doi.org/10.1364/AO.53.004532


View Full Text Article

Enhanced HTML    Acrobat PDF (841 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe a novel interferometric method, based on nested Fresnel zone lenses or photon sieves, for testing and measuring the radius of curvature of precision spherical surfaces that have radii in a range between several meters and a few hundred meters. We illustrate the measurement concept with radius measurements of a spherical mirror with a radius of about 10 m. The measured radius is 9877mm±10mm for a coverage factor k=2. Our measurements also demonstrate, for the first time to the best of our knowledge, the utility of photon sieves for precision surface metrology because they diffuse higher diffraction orders of computer generated holograms, which reduces coherent noise.

OCIS Codes
(220.4840) Optical design and fabrication : Testing
(050.1965) Diffraction and gratings : Diffractive lenses

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: April 8, 2014
Revised Manuscript: May 23, 2014
Manuscript Accepted: May 27, 2014
Published: July 9, 2014

Citation
Quandou Wang, Ulf Griesmann, and Johannes A. Soons, "Holographic radius test plates for spherical surfaces with large radius of curvature," Appl. Opt. 53, 4532-4538 (2014)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-53-20-4532


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Twyman, Prism and LensMaking: A Textbook for Optical Glassworkers, 2nd ed. (CRC Press, 1988).
  2. J. E. Greivenkamp and J. H. Bruning, “Phase shifting interferometry,” in Optical Shop Testing, D. Malacara, ed., 2nd ed. (Wiley, 1992), pp. 574–580.
  3. L. Selberg, “Radius measurement by interferometry,” Opt. Eng. 31, 1961–1966 (1992). [CrossRef]
  4. U. Griesmann, J. Soons, and Q. Wang, “Measuring form and radius of spheres with interferometry,” CIRP Ann. 53, 451–454 (2004). [CrossRef]
  5. T. L. Schmitz, A. D. Davies, and C. J. Evans, “Uncertainties in interferometric measurements of radius of curvature,” Proc. SPIE 4451, 432–447 (2001). [CrossRef]
  6. T. L. Schmitz, C. J. Evans, A. Davies, and W. T. Estler, “Displacement uncertainty in interferometric radius measurements,” CIRP Ann. 51, 451–454 (2002). [CrossRef]
  7. A. Davies and T. L. Schmitz, “Correction for stage error motions in radius measurements,” Appl. Opt. 44, 5884–5893 (2005). [CrossRef]
  8. T. L. Schmitz, N. Gardner, M. Vaughn, K. Medicus, and A. Davies, “Improving optical bench radius measurements using stage error motion data,” Appl. Opt. 47, 6692–6700 (2008). [CrossRef]
  9. M. C. Gerchman and G. C. Hunter, “Differential technique for accurately measuring the radius of long radius concave optical surfaces,” Opt. Eng. 19, 843–848 (1980).
  10. K. Freischlad, M. Küchel, W. Wiedmann, W. Kaiser, and M. Mayer, “High precision interferometric testing of spherical mirrors with long radius of curvature,” Proc. SPIE 1332, 8–17 (1990). [CrossRef]
  11. R. E. Parks, C. J. Evans, P. J. Sullivan, L.-Z. Shao, and B. Loucks, “Measurements of the LIGO pathfinder optics,” Proc. SPIE 3134, 95–111 (1997). [CrossRef]
  12. Q. Wang, G. Gao, and U. Griesmann, “Radius measurement of spherical surfaces with large radii-of-curvature using dual-focus zone plates,” in Optical Fabrication and Testing (OF&T) (Optical Society of America, 2008), paper OWB2.
  13. A. F. Fercher and M. Kriese, “Justierung synthetischer Hologramme mit kugelförmigen Referenzwellen (engl.: Alignment of synthetic holograms with spherical reference waves),” Optik 36, 547–551 (1972).
  14. B. Kress and P. Meyrueis, Digital Diffractive Optics (Wiley, 2000).
  15. L. Kipp, M. Skibowski, R. L. Johnson, R. Bernd, R. Adelung, S. Harm, and R. Seemann, “Sharper images by focusing soft x-rays with photon sieves,” Nature 414, 184–188 (2001). [CrossRef]
  16. Q. Cao and J. Jahns, “Focusing analysis of the pinhole photon sieve: individual far-field model,” J. Opt. Soc. Am. A 19, 2387–2393 (2002). [CrossRef]
  17. J. Jahns, Q. Cao, and S. Sinziger, “Micro- and nanooptics—an overview,” Laser Photon. Rev. 2, 249–263 (2008). [CrossRef]
  18. T. D. Beynon, I. Kirk, and T. R. Mathews, “Gabor zone plate with binary transmittance values,” Opt. Lett. 17, 544–546 (1992). [CrossRef]
  19. A. Engel and G. Herziger, “Computer-drawn modulated zone plates,” Appl. Opt. 12, 471–479 (1973). [CrossRef]
  20. Q. Wang and U. Griesmann, “A versatile bilayer resist for laser lithography at 405  nm on glass substrates,” Opt. Eng. 52, 105104 (2013). [CrossRef]
  21. H. I. Smith, M. E. Walsh, F. Zhang, J. Ferrera, G. Hourihan, D. Smith, R. Light, and M. Jaspan, “An innovative tool for fabricating computer-generated holograms,” J. Phys. Conf. Ser. 415, 012037 (2013). [CrossRef]
  22. R. Menon, A. Patel, D. Chao, M. Walsh, and H. I. Smith, “Zone-plate-array lithography (ZPAL): optical maskless lithography for cost-effective patterning,” Proc. SPIE 5751, 330–339 (2005). [CrossRef]
  23. D. C. O’Shea, T. J. Suleski, A. D. Kathman, and D. W. Prather, Diffractive Optics: Design, Fabrication, and Test (SPIE, 2004).
  24. W. J. Smith, Modern Optical Engineering, 2nd ed. (McGraw-Hill, 1990), pp. 328–329.
  25. P. de Groot, “Derivation of algorithms for phase-shifting interferometry using the concept of a data-sampling window,” Appl. Opt. 34, 4723–4730 (1995). [CrossRef]
  26. H. H. Ku, “Notes on the use of propagation of error formulas,” J. Res. Natl. Bur. Stand. 70C, 263–273 (1966). [CrossRef]
  27. Q. Wang, J. A. Soons, and U. Griesmann, “Holographic radius test plates,” Proc. SPIE 8838, 88380I (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited