OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 21 — Jul. 20, 2014
  • pp: 4669–4674

Fabrication of fiber optic long period gratings operating at the phase matching turning point using an ultraviolet laser

Rebecca Y. N. Wong, Edmond Chehura, Stephen E. Staines, Stephen W. James, and Ralph P. Tatam  »View Author Affiliations


Applied Optics, Vol. 53, Issue 21, pp. 4669-4674 (2014)
http://dx.doi.org/10.1364/AO.53.004669


View Full Text Article

Enhanced HTML    Acrobat PDF (879 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

It is known that optical fiber long period gratings (LPGs) exhibit their highest sensitivity to environmental perturbation when the period is such that the phase matching condition is satisfied at its turning point. The reproducible fabrication of LPGs with parameters satisfying this condition requires high resolution control over the properties of the grating. The performance of an LPG fabrication system based on the point-by-point UV exposure approach is analyzed in this paper, and the control of factors influencing reproducibility, including period, duty cycle, and the environment in which the device is fabricated, is explored.

© 2014 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(220.4610) Optical design and fabrication : Optical fabrication
(220.4830) Optical design and fabrication : Systems design

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: February 4, 2014
Revised Manuscript: May 13, 2014
Manuscript Accepted: May 16, 2014
Published: July 14, 2014

Citation
Rebecca Y. N. Wong, Edmond Chehura, Stephen E. Staines, Stephen W. James, and Ralph P. Tatam, "Fabrication of fiber optic long period gratings operating at the phase matching turning point using an ultraviolet laser," Appl. Opt. 53, 4669-4674 (2014)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-53-21-4669


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Prudenzano, L. Messcia, T. Palmisano, M. Surico, M. De Sario, and G. C. Righini, “Optimization of pump absorption in MOF lasers via multi-long-period gratings: design strategies,” Appl. Opt. 51, 1420–1430 (2012). [CrossRef]
  2. S. Baek, S. Roh, Y. Jeong, and B. Lee, “Experimental demonstration of enhancing pump absorption rate in cladding-pumped ytterbium-doped fiber laser using pump coupling long-period gratings,” IEEE Photon. Technol. Lett. 18, 700–702 (2006). [CrossRef]
  3. L. Mescia, “Design of long-period gratings in cladding-pumped microstructured optical fiber,” J. Opt. Soc. Am. B 25, 1833–1839 (2008). [CrossRef]
  4. H. Sakata and K. Yamahata, “Variable long-period fiber gratings controlled by ND-FE-B permanent magnet for erbium-doped fiber sources,” Microwave Opt. Technol. Lett. 56, 864–867 (2014).
  5. S. W. James and R. P. Tatam, “Optical fiber long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14, R49–R61 (2003). [CrossRef]
  6. T. Wang, S. Korposh, S. W. James, R. P. Tatam, and S.-W. Lee, “Optical fiber long period grating sensor with a polyelectrolyte alternate thin film for gas sensing of amine odors,” Sens. Actuators. B 185, 117–124 (2013). [CrossRef]
  7. S. Korposh, T. Wang, S. W. James, R. P. Tatam, and S.-W. Lee, “Pronounced aromatic carboxylic acid detection using a layer-by-layer mesoporous coating on optical fiber long period grating,” Sens. Actuators B 173, 300–309 (2012). [CrossRef]
  8. S. M. Topliss, S. W. James, F. Davis, S. P. J. Higson, and R. P. Tatam, “Optical fiber long period grating based selective vapor sensing of volatile organic compounds,” Sens. Actuators B 143, 629–634 (2010). [CrossRef]
  9. C. S. Cheung, S. M. Topliss, S. W. James, and R. P. Tatam, “Response of fiber optic long period gratings operating near the phase matching turning point to the deposition of nanostructured coatings,” J. Opt. Soc. Am. B 25, 897–902 (2008). [CrossRef]
  10. V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21, 692–694 (1996). [CrossRef]
  11. J. Blows and D. Y. Tang, “Gratings written with tripled output of Q-switched Nd:YAG laser,” Electron. Lett. 36, 1837–1839 (2000). [CrossRef]
  12. D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fiber grating fabrication with focused CO2 laser beams,” Electron. Lett. 34, 302–303 (1998). [CrossRef]
  13. X. Lan, Q. Han, T. Wei, J. Huang, and H. Xiao, “Turn-around-point long-period fiber gratings fabricated by CO2 laser point-by-point irradiations,” IEEE Photon. Technol. Lett. 23, 1664–1666 (2011). [CrossRef]
  14. Y. Kondo, K. Nouchi, T. Mitsuyu, M. Watanabe, P. Kazansky, and K. Hirao, “Fabrication of long-period fiber gratings by focused irradiation of infra-red femtosecond laser pulses,” Opt. Lett. 24, 646–648 (1999). [CrossRef]
  15. A. I. Kalachev, D. N. Nikogosyan, and G. Brambilla, “Long-period fiber grating fabrication by high-intensity femtosecond pulses at 211  nm,” J. Lightwave Technol. 23, 2568–2578 (2005). [CrossRef]
  16. M. Fujumaki, Y. Ohki, J. L. Brebner, and S. Roorda, “Fabrication of long-period optical fiber gratings by use of ion implantation,” Opt. Lett. 25, 88–90 (2000). [CrossRef]
  17. S. Savin, M. J. F. Digonnet, G. S. Kino, and H. J. Shaw, “Tunable mechanically induced long-period fiber gratings,” Opt. Lett. 25, 710–712 (2000). [CrossRef]
  18. G. Kakarantzas, T. E. Dimmick, T. A. Birks, R. Le Roux, and P. S. J. Russell, “Miniature all-fiber devices based on CO2 laser microstructuring of tapered fibers,” Opt. Lett. 26, 1137–1139 (2001). [CrossRef]
  19. G. Rego, O. Okhotnikov, E. Dianov, and V. Sulimov, “High-temperature stability of long-period fiber gratings using an electric arc,” J. Lightwave Technol. 29, 1137–1139 (2001).
  20. L. Zhang, W. Zhang, and I. Bennion, “In-fiber grating optic sensors,” in Fiber Optic Sensors, S. Yin, P. B. Ruffin, and F. T. S. Yu, eds., 2nd ed. (CRC Press, 2008), pp. 109–162.
  21. E. Anemogiannis, E. N. Glytsis, and T. K. Gaylord, “Transmission characteristics of long-period fiber gratings having arbitrary azimuthal/radial refractive index variations,” J. Lightwave Technol. 21, 218–227 (2003). [CrossRef]
  22. S. W. James, S. Korposh, S.-W. Lee, and R. P. Tatam, “A long period grating-based chemical sensor insensitive to the influence of interfering parameters,” Opt. Express 22, 8012–8023 (2014). [CrossRef]
  23. S. W. James, S. M. Topliss, and R. P. Tatam, “Properties of length-apodized LPGs operating at the phase matching turning point,” J. Lightwave Technol. 30, 2203–2209 (2012). [CrossRef]
  24. Y. Liu, J. A. R. Williams, L. Zhang, and I. Bennion, “Phase shifted and cascaded long-period fiber gratings,” Opt. Commun. 164, 27–31 (1999). [CrossRef]
  25. Y. Li, T. Wei, J. A. Montoya, S. V. Saini, X. Lan, X. Tang, J. Dong, and H. Xiao, “Measurement of CO2-laser-irradiation-induced refractive index modulation in single-mode fiber toward long-period fiber grating design and fabrication,” Appl. Opt. 47, 5296–5304 (2008). [CrossRef]
  26. E. M. Dianov, S. A. Vasilev, O. I. Medvedkov, and A. A. Frolov, “Dynamics of the refractive index induced in germanosilicate optical fibres by different types of UV irradiation,” Quantum Electron. 27, 785–788 (1997). [CrossRef]
  27. B. H. Kim, T.-J. Ahn, D. Y. Kim, B. H. Lee, Y. Chung, U.-C. Paek, and W.-T. Han, “Effect of CO2 laser irradiation on the refractive-index change in optical fibers,” Appl. Opt. 41, 3809–3815 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited