OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 22 — Aug. 1, 2014
  • pp: 4859–4864

Influence of horizontal damage size of grating ridge on the optical properties of multilayer dielectric gratings

Fanyu Kong, Yunxia Jin, Heyuan Guan, Shijie Liu, Jianbo Wu, Ying Du, and Hongbo He  »View Author Affiliations


Applied Optics, Vol. 53, Issue 22, pp. 4859-4864 (2014)
http://dx.doi.org/10.1364/AO.53.004859


View Full Text Article

Enhanced HTML    Acrobat PDF (1079 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Based on typical laser damage morphologies of multilayer dielectric gratings (MDGs), in this paper the influence of horizontal damage size of the grating ridge on optical properties of MDGs is analyzed by numerical calculations using the rigorous coupled wave analysis method. From simulation results, the optical performance of MDGs decreases with the increase in horizontal damage size of the grating ridge. But the maximum electric field value in the grating ridge and the multilayer enhances constantly with the increase in horizontal damage size, thus inducing further laser damage of MDGs. This paper provides the preliminary study for functional damage of MDGs.

© 2014 Optical Society of America

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(140.3330) Lasers and laser optics : Laser damage
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Diffraction and Gratings

History
Original Manuscript: January 21, 2014
Revised Manuscript: May 22, 2014
Manuscript Accepted: May 23, 2014
Published: July 22, 2014

Citation
Fanyu Kong, Yunxia Jin, Heyuan Guan, Shijie Liu, Jianbo Wu, Ying Du, and Hongbo He, "Influence of horizontal damage size of grating ridge on the optical properties of multilayer dielectric gratings," Appl. Opt. 53, 4859-4864 (2014)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-53-22-4859


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. A. Britten, W. A. Molander, A. M. Komashko, and C. P. Barty, “Multilayer dielectric gratings for petawatt class laser systems,” Proc. SPIE 5273, 1–7 (2004). [CrossRef]
  2. J. Qiao, A. W. Schmid, L. J. Waxer, T. Nguyen, J. Bunkenburg, C. Kingsley, A. Kozlov, and D. Weiner, “In situ detection and analysis of laser-induced damage on a 1.5-m multilayer-dielectric grating compressor for high-energy, petawatt-class laser systems,” Opt. Express 18, 10423–10431 (2010). [CrossRef]
  3. F. Canova, R. Clady, J.-P. Chambaret, M. Flury, S. Tonchev, R. Fechner, and O. Parriaux, “High-efficiency, broad band, high-damage threshold high-index gratings for femtosecond pulse compression,” Opt. Express 15, 15324–15334 (2007). [CrossRef]
  4. B. W. Shore, M. D. Perry, J. A. Britten, R. D. Boyd, M. D. Feit, H. T. Nguyen, R. Chow, G. E. Loomis, and L. Li, “Design of high-efficiency dielectric reflection gratings,” J. Opt. Soc. Am. A 14, 1124–1136 (1997). [CrossRef]
  5. J. Wang, Y. Jin, J. Shao, and Z. Fan, “Optimization design of an ultrabroadband, high-efficiency, all-dielectric grating,” Opt. Lett. 35, 187–189 (2010). [CrossRef]
  6. S. Liu, Z. Shen, W. Kong, J. Shen, Z. Deng, Y. Zhao, J. Shao, and Z. Fan, “Optimization of near-field optical field of multilayer dielectric gratings for pulse compressor,” Opt. Commun. 267, 50–57 (2006). [CrossRef]
  7. P. P. Lu, K.-X. Sun, R. L. Byer, J. A. Britten, H. T. Nguyen, J. D. Nissen, C. C. Larson, M. D. Aasen, T. C. Carlson, and C. R. Hoaglan, “Precise diffraction efficiency measurements of large-area greater-than-99%-efficient dielectric gratings at the Littrow angle,” Opt. Lett. 34, 1708–1710 (2009). [CrossRef]
  8. J. Qiao, A. Kalb, T. Nguyen, J. Bunkenburg, D. Canning, and J. H. Kelly, “Demonstration of large-aperture tiled-grating compressors for high-energy, petawatt-class, chirped-pulse amplification systems,” Opt. Lett. 33, 1684–1686 (2008). [CrossRef]
  9. D. H. Martz, H. T. Nguyen, D. Patel, J. A. Britten, D. Alessi, E. Krous, Y. Wang, M. A. Larotonda, J. George, B. Knollenberg, B. M. Luther, J. J. Rocca, and C. S. Menoni, “Large area high efficiency broad bandwidth 800  nm dielectric gratings for high energy laser pulse compression,” Opt. Express 17, 23809–23816 (2009). [CrossRef]
  10. J. Neauport, E. Lavastre, G. Razé, G. Dupuy, N. Bonod, M. Balas, G. de Villele, J. Flamand, S. Kaladgew, and F. Desserouer, “Effect of electric field on laser induced damage threshold of multilayer dielectric gratings,” Opt. Express 15, 12508–12522 (2007). [CrossRef]
  11. S. Hocquet, J. Neauport, and N. Bonod, “Microscopic evidence of the role of the near field enhancement in the short pulse damage mechanism of diffraction gratings,” Appl. Phys. Lett. 99, 061101 (2011). [CrossRef]
  12. F. Kong, Y. Jin, S. Liu, S. Chen, H. Guan, K. He, Y. Du, and H. He, “Femtosecond laser damage of broadband pulse compression gratings,” Chin. Opt. Lett. 11, 102302 (2013).
  13. W.-J. Kong, M.-J. Yun, S.-J. Liu, Y.-X. Jin, Z.-X. Fan, and J.-D. Shao, “Design of high-efficiency diffraction gratings based on rigorous coupled-wave analysis for 800  nm wavelength,” Chin. Phys. Lett. 25, 1684 (2008). [CrossRef]
  14. F. Kong, Y. Jin, S. Liu, H. Guan, Y. Du, and H. He, “Influence of arched groove bottom on laser-induced damage of multilayer dielectric gratings,” Optik 124, 6382–6385 (2013). [CrossRef]
  15. A. Reichart, N. Blanchot, P. Y. Baures, H. Bercegol, B. Wattelier, J. P. Zou, C. Sauteret, and J. Dijon, “CPA compression gratings with improved damage performance,” Proc. SPIE 4347, 521–527 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited