OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 22 — Aug. 1, 2014
  • pp: 4886–4893

Wavelength conversion in highly nonlinear silicon–organic hybrid slot waveguides

Linliang An, Hongjun Liu, Qibing Sun, Nan Huang, and Zhaolu Wang  »View Author Affiliations

Applied Optics, Vol. 53, Issue 22, pp. 4886-4893 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1095 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Wavelength conversion based on four-wave mixing (FWM) in a silicon–organic hybrid slot waveguide is theoretically investigated in the telecommunication bands. Compared with vertical slot waveguides, the horizontal slot waveguide structure exhibits much flatter dispersion. The maximum nonlinearity coefficient γ of 1.5×107W1km1 and the minimum effective mode area Aeff of 0.065μm2 are obtained in a horizontal slot waveguide with a 20-nm-thick optically nonlinear layer by controlling the geometric parameters. The wavelength conversion efficiency of 7.45 dB with a pump power of 100 mW in a 4-mm-long horizontal slot waveguide is obtained. This low power on-chip wavelength convertor will have potential applications in highly integrated optical circuits.

© 2014 Optical Society of America

OCIS Codes
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(230.7370) Optical devices : Waveguides
(230.7405) Optical devices : Wavelength conversion devices

ToC Category:
Nonlinear Optics

Original Manuscript: April 29, 2014
Manuscript Accepted: June 12, 2014
Published: July 23, 2014

Linliang An, Hongjun Liu, Qibing Sun, Nan Huang, and Zhaolu Wang, "Wavelength conversion in highly nonlinear silicon–organic hybrid slot waveguides," Appl. Opt. 53, 4886-4893 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010). [CrossRef]
  2. C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon–organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009). [CrossRef]
  3. H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5  μm wavelength,” Appl. Phys. Lett. 80, 416–418 (2002). [CrossRef]
  4. R. Dekker, A. Driessen, T. Wahlbrink, C. Moormann, J. Niehusmann, and M. Först, “Ultrafast Kerr-induced all-optical wavelength conversion in silicon waveguides using 1.55  μm femtosecond pulses,” Opt. Express 14, 8336–8346 (2006). [CrossRef]
  5. V. Raghunathan, R. Claps, D. Dimitropoulos, and B. Jalali, “Wavelength conversion in silicon using Raman-induced four-wave mixing,” Appl. Phys. Lett. 85, 34–36 (2004). [CrossRef]
  6. H. Rong, Y. H. Kuo, S. Xu, A. Liu, R. Jones, M. Paniccia, O. Cohen, and O. Raday, “Monolithic integrated Raman silicon laser,” Opt. Express 14, 6705–6712 (2006). [CrossRef]
  7. C. Koos, L. Jacome, C. Poulton, J. Leuthold, and W. Freude, “Nonlinear high index-contrast waveguides with optimum geometry,” in Nonlinear Photonics, OSA Technical Digest (CD) (Optical Society of America, 2007), paper JWA2.
  8. C. Koos, L. Jacome, C. Poulton, J. Leuthold, and W. Freude, “Nonlinear silicon-on-insulator waveguides for all-optical signal processing,” Opt. Express 15, 5976–5990 (2007). [CrossRef]
  9. P. Sanchis, J. Blasco, A. Martinez, and J. Marti, “Design of silicon-based slot waveguide configurations for optimum nonlinear performance,” J. Lightwave Technol. 25, 1298–1305 (2007). [CrossRef]
  10. I. D. Rukhlenko, M. Premaratne, and G. P. Agrawal, “Effective mode area and its optimization in silicon–nanocrystal waveguides,” Opt. Lett. 37, 2295–2297 (2012). [CrossRef]
  11. T. Vallaitis, S. Bogatscher, L. Alloatti, P. Dumon, R. Baets, M. L. Scimeca, I. Biaggio, F. Diederich, C. Koos, W. Freude, and J. Leuthold, “Optical properties of highly nonlinear silicon organic hybrid (SOH) waveguide geometries,” Opt. Express 17, 17357–17368 (2009). [CrossRef]
  12. J. Matres, C. Lacava, G. C. Ballesteros, P. Minzioni, I. Cristiani, J. M. Fédéli, J. Martí, and C. J. Oton, “Low TPA and free-carrier effects in silicon nanocrystal-based horizontal slot waveguides,” Opt. Express 20, 23838–23845 (2012). [CrossRef]
  13. X. Liu, Nonlinear Applications Using Silicon Nanophotonic Wires (Columbia University, 2011).
  14. P. Muellner, M. Wellenzohn, and R. Hainberger, “Nonlinearity of optimized silicon photonic slot waveguides,” Opt. Express 17, 9282–9287 (2009). [CrossRef]
  15. S. Polyakov, F. Yoshino, M. Liu, and G. Stegeman, “Nonlinear refraction and multiphoton absorption in polydiacetylenes from 1200 to 2200  nm,” Phys. Rev. B 69, 115421 (2004).
  16. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29, 1290–1291 (2004).
  17. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).
  18. A. K. Bhowmik and M. Thakur, “Self-phase modulation in polydiacetylene single crystal measured at 720–1064  nm,” Opt. Lett. 26, 902–904 (2001). [CrossRef]
  19. L. Zhang, Y. Yue, Y. X. Li, J. Wang, R. G. Beausoleil, and A. E. Willner, “Flat and low dispersion in highly nonlinear slot waveguides,” Opt. Express 18, 13187–13193 (2010). [CrossRef]
  20. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2006).
  21. M. Zhu, H. Liu, X. Li, N. Huang, Q. Sun, J. Wen, and Z. Wang, “Ultrabroadband flat dispersion tailoring of dual-slot silicon waveguides,” Opt. Express 20, 15899–15907 (2012). [CrossRef]
  22. Q. Lin, J. Zhang, P. M. Fauchet, and G. P. Agrawal, “Ultra-broadband parametric generation and wavelength conversion in silicon waveguides,” Opt. Express 14, 4786–4799 (2006). [CrossRef]
  23. Z. Iqbal, R. R. Chance, and R. H. Baughman, “Electronic structure change at a phase transition in a polydiacetylene crystal,” J. Chem. Phys. 66, 5520–5525 (1977). [CrossRef]
  24. D. N. Batchelder and D. Bloor, “An investigation of the electronic excited state of a polydiacetylene by resonance Raman spectroscopy,” J. Phys. C 15, 3005–3018 (1982).
  25. G. J. Blanchard, J. P. Heritage, A. C. V. Lehmen, M. K. Kelly, G. L. Baker, and S. Etemad, “Excitonic and phonon-mediated optical Stark effects in a conjugated polymer,” Phys. Rev. Lett. 63, 887–890 (1989). [CrossRef]
  26. W. Mathlouthi, H. Rong, and M. Paniccia, “Characterization of efficient wavelength conversion by four-wave mixing in submicron silicon waveguides,” Opt. Express 16, 16735–16745 (2008). [CrossRef]
  27. Z. Wang, H. Liu, N. Huang, Q. Sun, and J. Wen, “Influence of spectral broadening on femtosecond wavelength conversion based on four-wave mixing in silicon waveguides,” Appl. Opt. 50, 5430–5436 (2011). [CrossRef]
  28. Z. Wang, H. Liu, N. Huang, Q. Sun, and J. Wen, “Impact of dispersion profiles of silicon waveguides on optical parametric amplification in the femtosecond regime,” Opt. Express 19, 24732–24737 (2011).
  29. X. Sang and O. Boyraz, “Gain and noise characteristics of high-bit-rate silicon parametric amplifiers,” Opt. Express 16, 13122–13132 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited