OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 22 — Aug. 1, 2014
  • pp: 5065–5069

Dome-shaped whispering gallery mode laser for remote wall temperature sensing

Tindaro Ioppolo and Maurizio Manzo  »View Author Affiliations

Applied Optics, Vol. 53, Issue 22, pp. 5065-5069 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (561 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, we carried out experiments to investigate dome-shaped microlaser based on the whispering gallery modes for remote wall temperature sensing. The dome-shaped resonator was made of Norland blocking adhesive (NBA 107) doped with a solution of rhodamine 6G and ethanol. Two different configurations are considered: (i) resonator placed on top of a thin layer of 101 polydimethylsiloxane (101 PDMS), and (ii) resonator encapsulated in a thin layer of 101 PDMS. The microlaser was remotely pumped using a Q switch Nd:YAG laser with pulse repetition rate of 10 Hz, pulse linewidth of 10 ns, and pulse energy of 100μJ/cm2. The excited optical modes showed an average optical quality factor of 104 for both configurations. In addition, the measurements showed sensitivity to temperature of 0.06nm/°C and a resolution of 1°C for both configurations. This sensitivity was limited by the resolution of the experimental setup used in these studies.

© 2014 Optical Society of America

OCIS Codes
(140.2050) Lasers and laser optics : Dye lasers
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(140.3948) Lasers and laser optics : Microcavity devices
(280.4788) Remote sensing and sensors : Optical sensing and sensors
(280.6780) Remote sensing and sensors : Temperature

ToC Category:
Optical Devices

Original Manuscript: April 15, 2014
Revised Manuscript: June 9, 2014
Manuscript Accepted: July 1, 2014
Published: July 31, 2014

Tindaro Ioppolo and Maurizio Manzo, "Dome-shaped whispering gallery mode laser for remote wall temperature sensing," Appl. Opt. 53, 5065-5069 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Ioppolo, U. K. Ayaz, and M. V. Ötügen, “High-resolution force sensor based on morphology dependent optical resonances of polymeric spheres,” J. Appl. Phys. 105, 013535 (2009). [CrossRef]
  2. U. K. Ayaz, T. Ioppolo, and M. V. Ötügen, “Wall shear stress sensor based on the optical resonances of dielectric microspheres,” Meas. Sci. Technol. 22, 075203 (2011). [CrossRef]
  3. M. Manzo, T. Ioppolo, U. K. Ayaz, V. LaPenna, and M. V. Ötügen, “A photonic wall pressure sensor for fluid mechanics applications,” Rev. Sci. Instrum. 83, 105003 (2012). [CrossRef]
  4. G. Guan, S. Arnold, and M. V. Ötügen, “Temperature measurements using a microoptical sensor based on whispering gallery modes,” AIAA J. 44, 2385–2389 (2006). [CrossRef]
  5. F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. USA 105, 20701–20704 (2008). [CrossRef]
  6. S. Arnold, D. Keng, S. I. Shopova, S. Holler, W. Zurawsky, and F. Vollmer, “Whispering gallery mode carousel—a photonic mechanism for enhanced nanoparticle detection in biosensing,” Opt. Express 17, 6230–6238 (2009). [CrossRef]
  7. C. E. Finlayson, P. J. A. Sazio, R. Sanchez-Martin, M. Bradley, T. A. Kelf, and J. J. Baumberg, “Whispering gallery mode emission at telecommunications-window wavelengths using PbSe nanocrystals attached to photonic beads,” Semicond. Sci. Technol. 21, L21–L24 (2006). [CrossRef]
  8. F. Monifi, S. K. Ozdemir, and L. Yang, “Tunable add-drop filter using an active whispering gallery mode microcavity,” Appl. Phys. Lett. 103, 181103 (2013). [CrossRef]
  9. S. Lacey, I. M. White, Y. Sun, S. I. Shopova, J. M. Cupps, P. Zhang, and X. Fan, “Versatile opto-fluidic ring resonator lasers with ultra-low threshold,” Opt. Express 15, 15523–15530 (2007). [CrossRef]
  10. E. Özelci, M. Aas, A. Jonáš, and A. Kiraz, “Optofluidic FRET microlasers based on surface-supported liquid microdroplets,” Laser Phys. Lett. 11, 045802 (2014). [CrossRef]
  11. L. He, S. H. Özdemir, and L. Yang, “Whispering gallery microcavity lasers,” Laser Photonics Rev. 7, 60–82 (2013). [CrossRef]
  12. Z. Li and D. Psaltis, “Optofluidic dye lasers,” Microfluid. Nanofluid. 4, 145–158 (2008).
  13. M. Aas, A. Jonáš, and A. Kiraz, “Lasing in optically manipulated, dye-doped emulsion microdroplets,” Opt. Commun. 290, 183–187 (2013). [CrossRef]
  14. P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, “Whispering-gallery-mode lasing from a semiconductor nanocrystal/microsphere resonator composite,” Adv. Mater. 17, 1131–1136 (2005). [CrossRef]
  15. V. Sandoghdar, F. Treussart, J. Hare, F. Lefevre-Seguin, J. M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54, R1777–R1780 (1996). [CrossRef]
  16. M. Pelton and Y. Yamamoto, “Ultralow threshold laser using a single quantum dot and a microsphere cavity,” Phys. Rev. A 59, 2418–2421 (1999). [CrossRef]
  17. P. Jaffrennou, J. Claudon, M. Bazin, N. S. Malik, S. Reitzenstein, L. Worschech, M. Kamp, A. Forchel, and J. M. Gerard, “Whispering gallery mode lasing in high quality GaAs/AlAs pillar microcavities,” Appl. Phys. Lett. 96, 071103 (2010). [CrossRef]
  18. P. Michler, A. Kiraz, L. Zhang, C. Becher, E. Hu, and A. Imamoglu, “Laser emission from quantum dots in microdisk structures,” Appl. Phys. Lett. 77, 184–186 (2000). [CrossRef]
  19. R. Chen, V. D. Ta, and H. D. Sun, “Single mode lasing from hybrid hemispherical microresonators,” Sci. Rep. 2, 244 (2012).
  20. V. D. Ta, R. Chen, and H. Sun, “Flexible microresonators: lasing and sensing,” Proc. SPIE 8960, 89600E (2014). [CrossRef]
  21. C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, and S. H. Ozdemir, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94, 231119 (2009). [CrossRef]
  22. http://www.thorlabs.com/NewGroupPage9_PF.cfm?Guide=10&Category_ID=18&ObjectGroup_ID=196 .
  23. https://www.norlandprod.com/adhesives/noa61pg2.html .
  24. T. Ioppolo, N. Das, and M. V. Ötügen, “Whispering gallery modes of microspheres in the presence of a changing surrounding medium: a new ray-tracing analysis and sensor experiment,” J. Appl. Phys. 107, 103105 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited