OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 23 — Aug. 10, 2014
  • pp: 5088–5091

All-normal-dispersion passive harmonic mode-locking 220  fs ytterbium fiber laser

Junli Wang, Xiangbao Bu, Rui Wang, Long Zhang, Jiangfeng Zhu, Hao Teng, Hainian Han, and Zhiyi Wei  »View Author Affiliations

Applied Optics, Vol. 53, Issue 23, pp. 5088-5091 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (428 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report a stable passive second-harmonic mode-locked all-normal-dispersion ytterbium fiber laser based on nonlinear polarization evolution. This fiber laser has two polarization beam splitter output ports for optimizing the output spectrum 5 ps duration pulses with 187 mW average power being generated at the harmonic repetition rate of 99.6 MHz. By use of a pair of gratings to extracavity compensate the chirp, the pulse is further compressed to 220 fs. We measured that the peak-to-pedestal extinction of the radio frequency is about 80 dB corresponding to a pulse-to-pulse energy fluctuation of 0.32% and timing jitter of 3.2 ps.

© 2014 Optical Society of America

OCIS Codes
(140.3510) Lasers and laser optics : Lasers, fiber
(320.7090) Ultrafast optics : Ultrafast lasers

ToC Category:
Lasers and Laser Optics

Original Manuscript: April 10, 2014
Revised Manuscript: July 6, 2014
Manuscript Accepted: July 9, 2014
Published: August 4, 2014

Junli Wang, Xiangbao Bu, Rui Wang, Long Zhang, Jiangfeng Zhu, Hao Teng, Hainian Han, and Zhiyi Wei, "All-normal-dispersion passive harmonic mode-locking 220  fs ytterbium fiber laser," Appl. Opt. 53, 5088-5091 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. G. Usechak, G. P. Agrawal, and J. D. Zuegel, “Tunable, high repetition-rate, harmonically mode-locked ytterbium fiber laser,” Opt. Lett. 29, 1360–1362 (2004). [CrossRef]
  2. J. Rothenberg, “Ultrafast picket fence pulse trains to enhance frequency conversion of shaped inertial confinement fusion laser pulses,” Appl. Opt. 39, 6931–6938 (2000). [CrossRef]
  3. I. V. Bazarov and C. K. Sinclair, “High brightness, high current injector design for the Cornell ERL prototype,” in Proceedings of the 2003 Particle Accelerator Conference (IEEE, 2003), Vol. 3, pp. 2062–2064.
  4. A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Passive harmonic mode-locking of a fibre soliton ring laser,” Electron. Lett. 29, 1860–1861 (1993). [CrossRef]
  5. S. Zhou, D. G. Ouzounov, and F. W. Wise, “Passive harmonic mode locking of a soliton Yb fiber laser at repetition rates to 1.5  GHz,” Opt. Lett. 31, 1041–1043 (2006). [CrossRef]
  6. Y. Deng and W. H. Knox, “Self-starting passive harmonic mode-locked femtosecond Yb3+-doped fiber laser at 1030  nm,” Opt. Lett. 29, 2121–2123 (2004). [CrossRef]
  7. L. Kong, X. Xiao, and C. Yang, “Passive harmonic mode locked all-normal-dispersion Yb-doped fiber lasers,” Chin. Phys. B 20, 024207 (2011). [CrossRef]
  8. X. Zhu, C. Wang, S. Liu, and G. Zhang, “Tunable high-order harmonic mode-locking in Yb-doped fiber laser with all-normal dispersion,” IEEE Photon. Technol. Lett. 24, 754–756 (2012).
  9. C. Y. Chong, “Femtosecond fiber lasers and amplifiers based on the pulse propagation at normal dispersion,” Ph.D. thesis (Cornell University, 2008).
  10. J. Buckley, “High-energy ultrafast ytterbium fiber lasers,” Ph.D. thesis (Cornell University, 2006).
  11. A. Komarov, F. Amrani, A. Dmitriev, K. Komarov, D. Meshcheriakov, and F. Sanchez, “Multiple-pulse operation and bound states of solitons in passive mode-locked fiber lasers,” J. Opt. Pure Appl. Opt. 9, 1149–1156 (2007).
  12. D. von der Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B 39, 201–217 (1986). [CrossRef]
  13. M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene-polymer composite,” Opt. Express 20, 25077–25084 (2012).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited