OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 23 — Aug. 10, 2014
  • pp: 5246–5251

Continuous hydroxyl radical planar laser imaging at 50  kHz repetition rate

Stephen Hammack, Campbell Carter, Clemens Wuensche, and Tonghun Lee  »View Author Affiliations


Applied Optics, Vol. 53, Issue 23, pp. 5246-5251 (2014)
http://dx.doi.org/10.1364/AO.53.005246


View Full Text Article

Enhanced HTML    Acrobat PDF (657 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This study demonstrates high-repetition-rate planar laser-induced fluorescence (PLIF) imaging of hydroxyl radicals (OH) in flames at a continuous framing rate of 50 kHz. A frequency-doubled dye laser is pumped by the second harmonic of an Nd:YAG laser to generate laser radiation near 283 nm with a pulse width of 8 ns and rate of 50 kHz. Fluorescence is recorded by a two-stage image intensifier and complementary metal-oxide-semiconductor camera. The average power of the 283 nm beam reaches 7 W, yielding a pulse energy of 140 μJ. Both a Hencken burner and a DC transient-arc plasmatron are used to produce premixed CH4/air flames to evaluate the OH PLIF system. The average signal-to-noise ratio for the Hencken burner flame is greater than 20 near the flame front and greater than 10 further downstream in a region of the flame near equilibrium. Image sequences of the DC plasmatron discharge clearly illustrate development and evolution of flow features with signal levels comparable to those in the Hencken burner. The results are a demonstration of the ability to make high-fidelity OH PLIF measurements at 50 kHz using a Nd:YAG-pumped, frequency-doubled dye laser.

© 2014 Optical Society of America

OCIS Codes
(120.1740) Instrumentation, measurement, and metrology : Combustion diagnostics
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(140.3530) Lasers and laser optics : Lasers, neodymium
(140.3600) Lasers and laser optics : Lasers, tunable
(300.2530) Spectroscopy : Fluorescence, laser-induced
(140.3538) Lasers and laser optics : Lasers, pulsed

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: May 7, 2014
Manuscript Accepted: June 16, 2014
Published: August 8, 2014

Citation
Stephen Hammack, Campbell Carter, Clemens Wuensche, and Tonghun Lee, "Continuous hydroxyl radical planar laser imaging at 50  kHz repetition rate," Appl. Opt. 53, 5246-5251 (2014)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-53-23-5246


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Kychakoff, P. H. Paul, I. van Cruyningen, and R. K. Hanson, “Movies and 3D images of flowfields using planar laser-induced fluorescence,” Appl. Opt. 26, 2498–2500 (1987). [CrossRef]
  2. M. J. Dyer and D. R. Crosley, “Rapidly sequenced pair of two-dimensional images of OH laser-induced fluorescence in a flame,” Opt. Lett. 9, 217–219 (1984). [CrossRef]
  3. J. M. Seitzman, M. F. Miller, T. C. Island, and R. K. Hanson, “Double-pulse imaging using simultaneous OH/acetone PLIF for studying the evolution of high-speed, reacting mixing layers,” Proc. Combust. Inst. 25, 1743–1750 (1994). [CrossRef]
  4. C. F. Kaminski, J. Hult, and M. Aldén, “High repetition rate planar laser induced fluorescence of OH in a turbulent non-premixed flame,” Appl. Phys. B 68, 757–760 (1999). [CrossRef]
  5. B. O. Ayoola, R. Balachandran, J. H. Frank, E. Mastorakos, and C. F. Kaminski, “Spatially resolved heat release rate measurements in turbulent premixed flames,” Combust. Flame 144, 1–16 (2006). [CrossRef]
  6. W. Paa, D. Müller, H. Stafast, and W. Triebel, “Flame turbulences recorded at 1  kHz using planar laser induced fluorescence upon hot band excitation of OH radicals,” Appl. Phys. B 86, 1–5 (2007). [CrossRef]
  7. C. Kittler and A. Dreizler, “Cinematographic imaging of hydroxyl radicals in turbulent flames by planar laser-induced fluorescence up to 5  kHz repetition rate,” Appl. Phys. B 89, 163–166 (2007). [CrossRef]
  8. P. Wu, W. R. Lempert, and R. B. Miles, “Megahertz pulse-burst laser and visualization of shock-wave/boundary-layer interaction,” AIAA J. 38, 672–679 (2000). [CrossRef]
  9. F. Fuest, M. J. Papageorge, W. R. Lempert, and J. A. Sutton, “Ultrahigh laser pulse energy and power generation at 10  kHz,” Opt. Lett. 37, 3231–3233 (2012). [CrossRef]
  10. W. C. Young, L. A. Morton, E. Parke, and D. J. D. Hartog, “High-repetition-rate pulse-burst laser for Thomson scattering on the MST reversed-field pinch,” J. Instrum. 8, C11013 (2013).
  11. J. Sjöholm, E. Kristensson, M. Richter, M. Aldén, G. Göritz, and K. Knebel, “Ultra-high-speed pumping of an optical parametric oscillator (OPO) for high-speed laser-induced fluorescence measurements,” Meas. Sci. Technol. 20, 025306 (2009). [CrossRef]
  12. M. N. Slipchenko, J. D. Miller, S. Roy, J. R. Gord, S. A. Danczyk, and T. R. Meyer, “Quasi-continuous burst-mode laser for high-speed planar imaging,” Opt. Lett. 37, 1346–1348 (2012). [CrossRef]
  13. J. B. Michael, P. Venkateswaran, J. D. Miller, M. N. Slipchenko, J. R. Gord, S. Roy, and T. R. Meyer, “100  kHz thousand-frame burst-mode planar imaging in turbulent flames,” Opt. Lett. 39, 739–742 (2014). [CrossRef]
  14. B. Thurow, N. Jiang, and W. Lempert, “Review of ultra-high repetition rate laser diagnostics for fluid dynamic measurements,” Meas. Sci. Technol. 24, 012002 (2013). [CrossRef]
  15. M. Papageorge, T. McManus, F. Fuest, and J. Sutton, “Recent advances in high-speed planar Rayleigh scattering in turbulent jets and flames: increased record lengths, acquisition rates, and image quality,” Appl. Phys. B 115, 197–213 (2013).
  16. J. D. Miller, M. Slipchenko, T. R. Meyer, N. Jiang, W. R. Lempert, and J. R. Gord, “Ultrahigh-frame-rate OH fluorescence imaging in turbulent flames using a burst-mode optical parametric oscillator,” Opt. Lett. 34, 1309–1311 (2009). [CrossRef]
  17. I. Boxx, C. Heeger, R. Gordon, B. Böhm, A. Dreizler, and W. Meier, “On the importance of temporal context in interpretation of flame discontinuities,” Combust. Flame 156, 269–271 (2009). [CrossRef]
  18. I. Boxx, C. Heeger, R. Gordon, B. Böhm, M. Aigner, A. Dreizler, and W. Meier, “Simultaneous three-component PIV/OH-PLIF measurements of a turbulent lifted, C3H8-argon jet diffusion flame at 1.5  kHz repetition rate,” Proc. Combust. Inst. 32, 905–912 (2009). [CrossRef]
  19. I. Boxx, M. Stöhr, C. Carter, and W. Meier, “Sustained multi-kHz flamefront and 3-component velocity-field measurements for the study of turbulent flames,” Appl. Phys. B 95, 23–29 (2009). [CrossRef]
  20. R. Gordon, I. Boxx, C. Carter, A. Dreizler, and W. Meier, “Lifted diffusion flame stabilisation: conditional analysis of multi-parameter high-repetition rate diagnostics at the flame base,” Flow, Turbul. Combust. 88, 503–527 (2012). [CrossRef]
  21. I. Boxx, C. D. Carter, and W. Meier, “Investigation of turbulent lifted planar jet flames using highspeed laser imaging diagnostics,” presented at the 52nd Aerospace Sciences Meeting, National Harbor, Maryland, 2014.
  22. B. Böhm, C. Heeger, I. Boxx, W. Meier, and A. Dreizler, “Time-resolved conditional flow field statistics in extinguishing turbulent opposed jet flames using simultaneous highspeed PIV/OH-PLIF,” Proc. Combust. Inst. 32, 1647–1654 (2009). [CrossRef]
  23. S. Hammack, C. Carter, and T. Lee, “High-repetition-rate OH planar laser-induced fluorescence of a cavity flameholder,” J. Propul. Power 29, 1248–1251 (2013).
  24. A. M. Steinberg, I. Boxx, M. Stöhr, C. D. Carter, and W. Meier, “Flow–flame interactions causing acoustically coupled heat release fluctuations in a thermo-acoustically unstable gas turbine model combustor,” Combust. Flame 157, 2250–2266 (2010). [CrossRef]
  25. I. Boxx, C. Arndt, C. Carter, and W. Meier, “High-speed laser diagnostics for the study of flame dynamics in a lean premixed gas turbine model combustor,” Exp. Fluids 52, 555–567 (2012).
  26. M. Stöhr, I. Boxx, C. Carter, and W. Meier, “Dynamics of lean blowout of a swirl-stabilized flame in a gas turbine model combustor,” Proc. Combust. Inst. 33, 2953–2960 (2011). [CrossRef]
  27. DaVis 8, LaVision GmbH, Göttingen, Germany.
  28. W. S. Rasband, ImageJ, U. S. National Institute of Health, Bethesda, Maryland, 1997–2014.
  29. Y. D. Korolev, O. B. Frants, N. V. Landl, V. G. Geyman, and I. B. Matveev, “Glow-to-spark transitions in a plasma system for ignition and combustion control,” IEEE Trans. Plasma Sci. 35, 1651–1657 (2007). [CrossRef]
  30. Y. D. Korolev, O. B. Frants, N. V. Landl, V. G. Geyman, and I. B. Matveev, “Nonsteady-state gas-discharge processes in plasmatron for combustion sustaining and hydrocarbon decomposition,” IEEE Trans. Plasma Sci. 37, 586–592 (2009). [CrossRef]
  31. X. Rao, S. Hammack, T. Lee, C. Carter, and I. Matveev, “Combustion dynamics of plasma enhanced premixed and nonpremixed flames,” IEEE Trans. Plasma Sci. 38, 3265–3271 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited