OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 24 — Aug. 20, 2014
  • pp: 5275–5282

Full-Stokes Fourier-transform imaging spectropolarimeter using a time-division polarization modulator

Xin Meng, Jianxin Li, Huaqing Song, and Rihong Zhu  »View Author Affiliations


Applied Optics, Vol. 53, Issue 24, pp. 5275-5282 (2014)
http://dx.doi.org/10.1364/AO.53.005275


View Full Text Article

Enhanced HTML    Acrobat PDF (700 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A Fourier-transform imaging spectropolarimeter is presented and demonstrated. It is composed of a time-division polarization modulator and a high radiation throughput Fourier-transform spectrometer. Four polarization states of the input light are generated by rotating the retarder. Then, the polarized light enters the Fourier-transform spectrometer to create four sets of interferometric images, where we can recover four polarization spectra and calculate the full-Stokes vector in various wavenumber frequency. The method has good performance to resist instrument noise and has the advantage of high spatial resolution. The laboratory setup is described and the noise source is analyzed. Two proven experiments have been carried out in visible light.

© 2014 Optical Society of America

OCIS Codes
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(170.0110) Medical optics and biotechnology : Imaging systems
(300.6300) Spectroscopy : Spectroscopy, Fourier transforms
(110.5405) Imaging systems : Polarimetric imaging

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: April 4, 2014
Revised Manuscript: July 1, 2014
Manuscript Accepted: July 14, 2014
Published: August 12, 2014

Virtual Issues
Vol. 9, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Xin Meng, Jianxin Li, Huaqing Song, and Rihong Zhu, "Full-Stokes Fourier-transform imaging spectropolarimeter using a time-division polarization modulator," Appl. Opt. 53, 5275-5282 (2014)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-53-24-5275


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. J. Diner, R. A. Chipman, N. Beaudry, B. Cairns, L. D. Food, S. A. Macenka, T. J. Cunningham, S. Seshadri, and C. Keller, “An integrated multiangle, multispectral, and polarimetric imaging concept for aerosol remote sensing from space,” Proc. SPIE 5659, 88–96 (2005). [CrossRef]
  2. R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Imaging human epithelial properties with polarized light-scattering spectroscopy,” Nat. Med. 7, 1245–1248 (2001). [CrossRef]
  3. J. O. Stenflo, D. Twerenbold, J. W. Harvey, and J. W. Brault, “Coherent scattering in the solar spectrum: survey of linear polarization in the range 4200–9950  Å,” Astron. Astrophys. Suppl. Ser. 54, 505–514 (1983).
  4. D. A. Glenar, J. J. Hillman, B. Saif, and J. Bergstralh, “Acousto-optic imaging spectropolarimetry for remote sensing,” Appl. Opt. 33, 7412–7424 (1994). [CrossRef]
  5. N. J. Pust and J. A. Shaw, “Dual-field imaging polarimeter using liquid crystal variable retarders,” Appl. Opt. 45, 5470–5478 (2006). [CrossRef]
  6. K. Oka and T. Kato, “Spectroscopic polarimetry with a channeled spectrum,” Opt. Lett. 24, 1475–1477 (1999). [CrossRef]
  7. S. H. Jones, F. J. Iannarilli, and P. L. Kebabian, “Realization of quantitative-grade fieldable snapshot imaging spectropolarimeter,” Opt. Express 12, 6559–6573 (2004). [CrossRef]
  8. F. Yann, T. Jean, S. Herve, C. Pierre, F. Pierre, C. Christophe, D. Joel, and P. Jerome, “Experimental results from an airborne static Fourier-transform imaging spectrometer,” Appl. Opt. 50, 5894–5904 (2011). [CrossRef]
  9. R. G. Sellar and G. D. Boreman, “Comparison of relative signal-to-noise ratios of different classes of imaging spectrometer,” Appl. Opt. 44, 1614–1624 (2005). [CrossRef]
  10. M. W. Kudenov, N. A. Hagen, E. L. Dereniak, and G. R. Gerhart, “Fourier-transform channeled spectropolarimetry in the MWIR,” Opt. Express 15, 12792–12805 (2007). [CrossRef]
  11. J. Li, J. Zhu, and H. Wu, “Compact static Fourier-transform imaging spectropolarimeter based on channeled polarimetry,” Opt. Lett. 35, 3784–3786 (2010). [CrossRef]
  12. T. Mu, C. Zhang, C. Jia, and W. Ren, “Static hyperspectral imaging polarimeter for full linear Stokes parameters,” Opt. Express 20, 18194–18201 (2012). [CrossRef]
  13. C. Zhang, H. Wu, and J. Li, “Fourier-transform hyperspectrral imaging polarimeter for remote sensing,” Opt. Eng. 50, 066201 (2011). [CrossRef]
  14. J. S. Tyo and T. S. Turner, “Variable-retardance, Fourier-transform imaging spectropolarimeters for visible spectrum remote sensing,” Appl. Opt. 40, 1450–1458 (2001). [CrossRef]
  15. X. Meng, J. Li, T. Xu, D. Liu, and R. Zhu, “High throughput full Stokes Fourier-transform imaging spectropolarimetry,” Opt. Express 21, 32071–32085 (2013). [CrossRef]
  16. X. Meng, J. Li, D. Liu, and R. Zhu, “Fourier-transform imaging spectropolarimeter using simultaneous polarization modulation,” Opt. Lett. 38, 778–780 (2013). [CrossRef]
  17. J. Li, W. Zhou, X. Meng, D. Liu, and R. Zhu, “Fourier-transform imaging spectrometry using Sagnac interferometer,” Proc. SPIE 8910, 89101Y (2013). [CrossRef]
  18. X. Meng, J. Li, Y. Zhang, and R. Zhu, “Full-Stokes imaging polarimetry using a combination of a retarder and a polarizer,” Proc. SPIE 8908, 890829 (2013). [CrossRef]
  19. J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45, 5453–5469 (2006). [CrossRef]
  20. D. Clark and J. F. Grainger, Polarized Light and Optical Measurement (Pergamon, 1971).
  21. M. Lavi, U. Milman, D. Cabib, Y. Garini, A. Gil, T. Juta, and M. Adel, “A new compact design interferometer based spectral imaging system for bio-medical applications,” Proc. SPIE 3261, 313–321 (1996). [CrossRef]
  22. H. Dong, P. Shum, Y. Gong, and Q. Sun, “Measurement errors induced by retardance deviation in a rotatable retarder fixed polarizer Stokes polarimeter,” Opt. Eng. 51, 033001 (2012). [CrossRef]
  23. A. Dutt and V. Rokhlin, “Fast Fourier-transforms for nonequispaced data,” Siam J. Sci. Comput. 14, 1368–1393 (1993). [CrossRef]
  24. W. Ren, C. Zhang, C. Jia, T. Mu, Q. Li, and L. Zhang, “Precision spectrum reconstruction of the Fourier-transforms imaging spectrometer based on polarization beam splitters,” Opt. Lett. 38, 1295–1297 (2013). [CrossRef]
  25. A. Barducci, D. Guzzi, C. Lastri, P. Marcoionni, V. Nardino, and I. Pippi, “Theoretical aspects of Fourier-transform spectrometry and common path triangular interferometers,” Opt. Express 18, 11622–11649 (2010). [CrossRef]
  26. J. S. Tyo, “Noise equalization in Stokes parameter images obtained by use of variable-retardance polarimeters,” Opt. Lett. 25, 1198–1200 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited