OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 24 — Aug. 20, 2014
  • pp: 5312–5321

Characterization and analysis of finite-beam Bragg diffraction in a periodically poled lithium niobate electro-optic grating

J. W. Chang, H. F. Yau, H. P. Chung, W. K. Chang, and Y. H. Chen  »View Author Affiliations


Applied Optics, Vol. 53, Issue 24, pp. 5312-5321 (2014)
http://dx.doi.org/10.1364/AO.53.005312


View Full Text Article

Enhanced HTML    Acrobat PDF (929 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the study, both theoretical and experimental, of the finite-beam Bragg diffraction behavior of an electro-optic (EO) volume grating made of a periodically poled lithium niobate (PPLN) crystal. When a Gaussian laser beam is used, the experimental observations show that the diffraction characteristics of the PPLN EO Bragg device, including the diffraction mode pattern and diffraction efficiency, are closely related to the interaction beam size and applied voltage, which cannot be modeled properly by a simplified theory using the plane-wave approximation. In this work, we have developed a theoretical model for describing the diffraction behavior of a PPLN EO Bragg device based on the coupled-wave theory with the aid of the plane-wave decomposition method. Specifically, we found that it is the angular distribution (or the dephasing bandwidth) of the plane wave elements decomposed from the incident Gaussian beam and grating strength that determine the Bragg coupling behavior of the device. We also identified some other electro-optically induced effects in the PPLN grating as an important mechanism in affecting the diffraction performance of the present device, especially at high working voltages.

© 2014 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(230.2090) Optical devices : Electro-optical devices

ToC Category:
Diffraction and Gratings

History
Original Manuscript: June 12, 2014
Manuscript Accepted: July 10, 2014
Published: August 12, 2014

Citation
J. W. Chang, H. F. Yau, H. P. Chung, W. K. Chang, and Y. H. Chen, "Characterization and analysis of finite-beam Bragg diffraction in a periodically poled lithium niobate electro-optic grating," Appl. Opt. 53, 5312-5321 (2014)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-53-24-5312

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited