OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 24 — Aug. 20, 2014
  • pp: 5330–5343

Atmospheric temperature measurements at altitudes of 5–30  km with a double-grating-based pure rotational Raman lidar

Jingyu Jia and Fan Yi  »View Author Affiliations


Applied Optics, Vol. 53, Issue 24, pp. 5330-5343 (2014)
http://dx.doi.org/10.1364/AO.53.005330


View Full Text Article

Enhanced HTML    Acrobat PDF (1136 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A pure rotational Raman (PRR) lidar based on a second-harmonic generation Nd:YAG laser is built for measuring the atmospheric temperature at altitudes of 5–30 km. A double-grating polychromator is designed to extract the wanted PRR signals and suppress the elastically backscattered light. Measured examples present the overall lidar performance. For the 1-h integrated lidar temperature profiles, the 1σ statistical uncertainty is less than 0.5 K up to 17km, while it does not exceed 2 K at altitudes of 17–26.3 km. Based on 38 nights of high-quality lidar temperature data, the temperature variability is studied. It is found that the variability differs between the nights with inversion layer and those without it. On the nights without inversion layer, the local hour-to-hour temperature variability was mostly less than 1 K at altitudes of 5–17 km. At altitudes of 17–23 km, it grew to 1.2–2.4 K. On the nights with inversion layer, in the middle and upper troposphere, the significant variability was found to occur only at the inversion-layer altitudes. At other tropospheric altitudes off the inversion layer, the variability was generally less than 1 K. The statistical results indicate that the temperature variability mostly was stronger in the presence of inversion layer than in its absence.

© 2014 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(010.3640) Atmospheric and oceanic optics : Lidar
(230.1950) Optical devices : Diffraction gratings
(280.6780) Remote sensing and sensors : Temperature

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: April 16, 2014
Manuscript Accepted: July 5, 2014
Published: August 12, 2014

Citation
Jingyu Jia and Fan Yi, "Atmospheric temperature measurements at altitudes of 5–30  km with a double-grating-based pure rotational Raman lidar," Appl. Opt. 53, 5330-5343 (2014)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-53-24-5330

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited