OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 24 — Aug. 20, 2014
  • pp: 5359–5366

Mueller-matrix polarimeter using analysis of the nonlinear voltage–retardance relationship for liquid-crystal variable retarders

J. M. López-Téllez and N. C. Bruce  »View Author Affiliations


Applied Optics, Vol. 53, Issue 24, pp. 5359-5366 (2014)
http://dx.doi.org/10.1364/AO.53.005359


View Full Text Article

Enhanced HTML    Acrobat PDF (498 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A method for using liquid-crystal variable retarders (LCVRs) with continually varying voltage to measure the complete Mueller matrix of a general sample is presented. The LCVRs are usually employed with fixed retardance values due to the nonlinear voltage–retardance behavior that they show. For the measurement method presented here, the nonlinear voltage–retardance relationship is first measured, and then a linear fit of the known retardance terms to the detected signal is performed. For a gap of air, the measurement error in the Mueller-matrix polarimeter is estimated at 1%–10%, depending on the Mueller-matrix element. Also, we present experimental results for a Glan–Thompson prism polarizer as a test sample, and we use the measured Mueller parameters as functions of the orientation of the optical axes of the polarizer as an indication of the quality of the polarimeter. In addition, results are compared to a typical step-voltage method to measure the Mueller matrix. Both methods give good results.

© 2014 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.4640) Instrumentation, measurement, and metrology : Optical instruments
(120.5410) Instrumentation, measurement, and metrology : Polarimetry
(230.3720) Optical devices : Liquid-crystal devices
(230.5440) Optical devices : Polarization-selective devices

ToC Category:
Optical Devices

History
Original Manuscript: May 12, 2014
Revised Manuscript: July 7, 2014
Manuscript Accepted: July 14, 2014
Published: August 13, 2014

Citation
J. M. López-Téllez and N. C. Bruce, "Mueller-matrix polarimeter using analysis of the nonlinear voltage–retardance relationship for liquid-crystal variable retarders," Appl. Opt. 53, 5359-5366 (2014)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-53-24-5359


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Goldstein, Polarized Light, 2nd ed. (Dekker, 2003).
  2. R. M. A. Azzam, “Oscillating-analyzer ellipsometer,” Rev. Sci. Instrum. 47, 624–628 (1976). [CrossRef]
  3. R. M. A. Azzam, “Photopolarimetric measurement of the Mueller matrix by Fourier analysis of a single detected signal,” Opt. Lett. 2, 148–150 (1978). [CrossRef]
  4. D. H. Goldstein, “Mueller matrix dual-rotating-retarder polarimeter,” Appl. Opt. 31, 6676–6683 (1992). [CrossRef]
  5. J. S. Tyo, Z. Wang, S. J. Johnson, and B. G. Hoover, “Design and optimization of partial Mueller matrix polarimeters,” Appl. Opt. 49, 2326–2333 (2010). [CrossRef]
  6. S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7, 329–340 (2002). [CrossRef]
  7. I. S. Nerbo, S. LeRoy, M. Foldyna, M. Kildemo, and E. Sondergard, “Characterization of inclined GaSb nanopillars by Mueller matrix ellipsometry,” J. Appl. Phys. 108, 014307 (2010). [CrossRef]
  8. N. C. Bruce, A. Dominguez-Báez, T. Santana-Sánchez, X. Téllez-Díaz, A. Nogueira-Jiménez, and R. Nava-Sandoval, “Design of a scanning polarimetric scatterometer for rough surface scattering measurements,” J. Phys. Conf. Ser. 274, 012135 (2011). [CrossRef]
  9. T. Santana-Sánchez, R. Nava-Sandoval, N. Bruce, D. Domínguez-Báez, and X. B. Téllez-Díaz, “Development of a goniometric scatterometer used for polarized light scattering from rough surfaces,” presented at the 1st International Congress on Instrumentation and Applied Sciences, CCADET-UNAM, Cancún, Mexico, 26–29 October2010.
  10. D. Lara and C. Dainty, “Axially resolved complete Mueller matrix confocal microscopy,” Appl. Opt. 45, 1917–1930 (2006). [CrossRef]
  11. O. G. Rodríguez-Herrera, D. Lara, and C. Dainty, “Far-field polarization-based sensitivity to sub-resolution displacements of a sub-resolution scatterer in tightly focused fields,” Opt. Express 18, 5609–5628 (2010). [CrossRef]
  12. F. Delplancke, “Investigation of rough surfaces and transparent birefringent samples with Mueller-matrix scatterometry,” Appl. Opt. 36, 7621–7628 (1997). [CrossRef]
  13. G. Martínez-Ponce, C. Solano, and C. Pérez-Barrios, “Hybrid complete Mueller polarimeter based on phase modulators,” Opt. Lasers Eng. 49, 723–728 (2011). [CrossRef]
  14. A. De Martino, Y.-K. Kim, E. Garcia-Caurel, B. Laude, and B. Drévillon, “Optimized Mueller polarimeter with liquid crystals,” Opt. Lett. 28, 616–618 (2003). [CrossRef]
  15. M. Mujat and A. Dogariu, “Real-time measurement of the polarization transfer function,” Appl. Opt. 40, 34–44 (2001). [CrossRef]
  16. See http://www.meadowlark.com for details on the fabrication and operation of liquid crystal variable retarders.
  17. J. M. López-Téllez and N. C. Bruce, “Stokes polarimetry using analysis of the nonlinear voltage-retardance relationship for liquid-crystal variable retarders,” Rev. Sci. Instrum. 85, 033104 (2014). [CrossRef]
  18. W. S. Bickel and W. M. Bailey, “Stokes vectors, Mueller matrices and polarized scattered light,” Am. J. Phys. 53, 468–478 (1985). [CrossRef]
  19. P. Terrier, J. M. Charbois, and V. Devlaminck, “Fast-axis orientation dependence on driving voltage for a Stokes polarimeter based on concrete liquid-crystal variable retarders,” Appl. Opt. 49, 4278–4283 (2010). [CrossRef]
  20. E. Compain, S. Poirier, and B. Drevillon, “General and self-consistent method for the calibration of polarization modulators, polarimeters, and Mueller-matrix ellipsometers,” Appl. Opt. 38, 3490–3502 (1999). [CrossRef]
  21. R. L. Heredero, N. Uribe-Patarroyo, T. Belenguer, G. Ramos, A. Sánchez, M. Reina, V. Martínez Pillet, and A. Álvarez-Herrero, “Liquid-crystal variable retarders for aerospace polarimetry applications,” Appl. Opt. 46, 689–698 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited